Paper | Title | Page |
---|---|---|
MOPB065 | Recent Measurements on the SC 325 MHz CH-Cavity | 255 |
|
||
Funding: Work supported by GSI, BMBF Contr. No. 06FY7102 At the Institute for Applied Physics (IAP), Frankfurt University, a sc 325 MHz CH-Cavity has been designed and fabricated. Successful tests at 4 K and 2 K with gradients up to 14.1 MV/m have been performed. The cavity is destined for a 11.4 AMeV 10 mA ion beam at the GSI UNILAC, Darmstadt. Consisting of 7 gaps and a geometrical beta of 0.16 this resonator is designed to provide a gradient of 5 MV/m. Novel features of this structure comprise a compact design, low electric peak fields, improved surface processing possibilities and power coupling. In addition a tuner system based on mechanically deformable bellow tuners attached inside the cavity and driven either by a stepping motor or a piezo actuator will keep the cavity on resonance. This contribution reports about the latest measurements on the cavity with the recently attached helium vessel and a renewed surface processing. |
||
![]() |
Poster MOPB065 [1.270 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB066 | R&D Status of the New Superconducting CW Heavy Ion LINAC@GSI | 258 |
|
||
To keep the ambitious Super Heavy Element (SHE) physics program at GSI competitive a superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC is currently under progress as a multi-stage R&D program of GSI, HIM and IAP*. The baseline linac design consists of a high performance ion source, a new low energy beam transport line, an (cw) upgraded High Charge State Injector (HLI), and a matching line (1.4 MeV/u) which is followed by the new sc-DTL LINAC for post acceleration up to 7.3 MeV/u. In the present design the new cw-heavy ion LINAC comprises constant-beta sc Crossbar-H-mode (CH) cavities operated at 217 MHz. The advantages of the proposed beam dynamics concept applying a constant beta profile are easy manufacturing with minimized costs as well as a straightforward energy variation**. An important milestone will be the full performance test of the first CH cavity (Demonstrator), in a horizontal cryo module with beam. An advanced demonstrator setup comprising a string of cavities and focussing elements is proposed to build from 10 short CH-cavities with 8 gaps. The corresponding simulations and technical layout of the new cw heavy ion LINAC will be presented.
* W. Barth et al., Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC2014, THPME004 **M. Schwarz et al., Beam Dynamics for the sc cw Heavy Ion Linac at GSI, IPAC2015, THPF025 |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB075 | Measurements on the Superconducting 217 MHz CH Cavity During the Manufacturing Phase | 757 |
|
||
Funding: GSI, HIM, BMBF Contr. No. 05P12RFRBL Since in future the existing UNILAC (Universal Linear Accelerator) will be used as an injector for the FAIR (Facility for Antiproton and Ion Research) project, a new superconducting (sc) continuous wave (cw) linac at GSI is proposed to keep the Super Heavy Element (SHE) program at a competitive high level. In this context, a sc 217 MHz crossbar-H-mode (CH) cavity has been designed at the Institute for Applied Physics (IAP), Frankfurt University, and was built at Research Instruments (RI) GmbH, Germany. The cavity serves as a first prototype to demonstrate the reliable operability under a realistic accelerator environment and its successful beam operation will be a milestone on the way to the new linac. In this contribution measurements during the production process of the cavity as well as corresponding simulations will be presented. |
||
![]() |
Poster TUPB075 [2.476 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |