Paper | Title | Page |
---|---|---|
WEPAC33 | Results of the New High Power Tests of Superconducting Photonic Band Gap Structure Cells | 850 |
|
||
Funding: This work is supported by the Department of Defense High Energy Laser Joint Technology Office through the Office of Naval Research. We present an update on the 2.1 GHz superconducting rf (SRF) photonic band gap (PBG) resonator experiment in Los Alamos. The new SRF PBG cell was designed with the particular emphasis on changing the shape of PBG rods to reduce the peak magnetic fields and at the same time to preserve its effectiveness for suppression of the higher order modes (HOMs). The new PBG cells have great potential for outcoupling long-range wakefields in SRF accelerator structures without affecting the fundamental accelerating mode. Using PBG structures in superconducting particle accelerators will allow operation at higher frequencies and moving forward to significantly higher beam luminosities thus leading towards a completely new generation of colliders for high energy physics. Here we report the results of our efforts to fabricate 2.1 GHz PBG cells with elliptical rods and to test them with high power in a liquid helium bath at the temperature of 2 Kelvin. The high gradient performance of the cells will be evaluated and the results will be compared to electromagnetic and thermal simulations. |
||