WEOBS —  Accelerator Technology I   (30-Mar-11   10:00—12:00)
Chair: V.D. Shiltsev, Fermilab, Batavia, USA
Paper Title Page
WEOBS1 The Berkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator 1416
 
  • W. Leemans, R.M. Duarte, E. Esarey, D.S. Fournier, C.G.R. Geddes, D. Lockhart, C.B. Schroeder, C. Tóth, J.-L. Vay, S. Zimmermann
    LBNL, Berkeley, California, USA
 
  An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, under which the required Ti:sapphire laser system for the acceleration experiments is being installed. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and allow acceleration of electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50-200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.  
 
WEOBS2
Synchronization of X-Rays and Lasers for Pump-Probe Experiments at Ultrafast Light Sources  
 
  • J.M. Byrd
    LBNL, Berkeley, California, USA
 
  Funding: Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and DE-AC02-76SF00515.
The scientific potential of femtosecond x-ray pulses at Linac-driven FELs is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. To achieve this, precise synchronization is required between the arrival time diagnostic and the laser, which are often separated by hundreds of meters. The speaker will report on the present state of an effort to reach femtosecond level synchronization as well as discuss future directions.
 
slides icon Slides WEOBS2 [6.241 MB]  
 
WEOBS3 The Effects of a Density Mismatch in a Two-State LWFA 1421
 
  • B.B. Pollock, F. Albert, C. Filip, D.H. Froula, S.H. Glenzer, J.E. Ralph
    LLNL, Livermore, California, USA
  • C.E. Clayton, C. Joshi, K.A. Marsh, J. Meinecke, A.E. Pak, J.L. Shaw
    UCLA, Los Angeles, California, USA
  • K.L. Herpoldt
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.R. Tynan
    UCSD, La Jolla, California, USA
 
  Funding: Work performed under U.S. DOE Contract DE-AC52-07NA27344 and was partially funded by the Laboratory Directed Research and Development Program under project tracking code 06-ERD-056.
A two-stage Laser Wakefield Accelerator (LWFA) has been developed, which utilizes the ionization induced injection mechanism to produce high energy, narrow energy spread electron beams when the electron density is equal in both stages. However, when the densities are not equal these high quality beams are not observed. As the electron density varies across the interface between the adjacent stages the size of the ion cavity is expected to change; this results in either a reduction of the peak electron energy (for a density decrease), or in the exclusion of previously trapped charge from the first wake period (for a density increase). The latter case can be overcome if the interaction length before the density interface exceeds a threshold determined by the densities in each stage, and may provide a mechanism for enhanced energy gain.
 
 
WEOBS4 Improved Energy Changes at the Linac Coherent Light Source 1424
 
  • N. Lipkowitz, H. Loos, C.R. Melton, G. Yocky
    SLAC, Menlo Park, California, USA
 
  The user requirements and beam time scheduling of the LCLS imposes a demand for fast changes in machine energy across the entire operating range of 3.3-15 GeV (480-10000 eV). Early operational experience during LCLS commissioning revealed this process to be problematic and error-prone, sometimes requiring substantial re-tuning at each change. To streamline the process, a software tool has been developed to gradually ramp the machine energy while the beam remains on, allowing beam-based feedbacks to continue to work during the energy change. The tool has considerably improved the speed and reliability of configuration changes, and also extends the capability of the LCLS, allowing for slow scans of the FEL photon energy over a wide range. This poster presents the basic process, analysis of the performance gains, and possible future improvements.  
slides icon Slides WEOBS4 [62.503 MB]  
 
WEOBS5 Status of the Short-Pulse X-ray Project (SPX) at the Advanced Photon Source (APS) 1427
 
  • R. Nassiri, N.D. Arnold, G. Berenc, M. Borland, D.J. Bromberek, Y.-C. Chae, G. Decker, L. Emery, J.D. Fuerst, A.E. Grelick, D. Horan, F. Lenkszus, R.M. Lill, V. Sajaev, T.L. Smith, G.J. Waldschmidt, G. Wu, B.X. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • G. Cheng, G. Ciovati, J. Henry, P. Kneisel, J.D. Mammosser, R.A. Rimmer, L. Turlington, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11354.
The Advanced Photon Source Upgrade project (APS-U) at Argonne includes implementation of Zholents’* deflecting cavity scheme for production of short x-ray pulses. This is a joint project between Argonne National Laboratory, Thomas Jefferson National Laboratory, and Lawrence Berkeley National Laboratory. This paper describes performance characteristics of the proposed source and technical issues related to its realization. Ensuring stable APS storage ring operation requires reducing quality factors of these modes by many orders of magnitude. These challenges reduce to those of the design of a single-cell SC cavity that can achieve the desired operating deflecting fields while providing needed damping of all these modes. The project team is currently prototyping and testing several promising designs for single-cell cavities with the goal of deciding on a winning design in the near future.
*A. Zholents et al., NIM A 425, 385 (1999).
 
slides icon Slides WEOBS5 [1.730 MB]  
 
WEOBS6 Status and Specifications of a Project X Front-End Accelerator Test Facility at Fermilab 1430
 
  • J. Steimel, R.L. Madrak, R.J. Pasquinelli, E. Peoples-Evans, R.C. Webber, D. Wildman
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility.
 
slides icon Slides WEOBS6 [2.401 MB]