TUOAN —  Colliders III   (29-Mar-11   08:30—09:30)
Chair: S.A. Gourlay, LBNL, Berkeley, California, USA
Paper Title Page
TUOAN1 SuperB: Next-Generation e+e B-factory Collider 690
 
  • A. Novokhatski, K.J. Bertsche, A. Chao, Y. Nosochkov, J.T. Seeman, M.K. Sullivan, U. Wienands, W. Wittmer
    SLAC, Menlo Park, California, USA
  • M.A. Baylac, O. Bourrion, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • S. Bettoni
    CERN, Geneva, Switzerland
  • M.E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, M.A. Preger, P. Raimondi, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A.V. Bogomyagkov, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • I.N. Okunev
    BINP, Novosibirsk, Russia
  • F. Poirier, C. Rimbault, A. Variola
    LAL, Orsay, France
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron-radiation applications.
 
slides icon Slides TUOAN1 [9.378 MB]  
 
TUOAN2 High Luminosity Electron-Hadron Collider eRHIC 693
 
  • V. Ptitsyn, E.C. Aschenauer, M. Bai, J. Beebe-Wang, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, P. He, W.A. Jackson, A.K. Jain, E.C. Johnson, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, M.G. Minty, B. Parker, A.I. Pikin, T. Rao, T. Roser, B. Sheehy, J. Skaritka, S. Tepikian, R. Than, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, Q. Wu, W. Xu, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
  • E. Tsentalovich
    MIT, Middleton, Massachusetts, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented.
 
slides icon Slides TUOAN2 [4.244 MB]  
 
TUOAN3 Lattice Design for the Future ERL-Based Electron Hadron Colliders eRHIC and LHeC 696
 
  • D. Trbojevic, J. Beebe-Wang, Y. Hao, D. Kayran, V. Litvinenko, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron-hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC’s 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC, a stand-along 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. . The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linacs straight sections with splitters and combiners.
 
slides icon Slides TUOAN3 [3.002 MB]  
 
TUOAN4 Feedback Scheme for Kink Instability in ERL Based Electron Ion Collider 699
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations.
 
slides icon Slides TUOAN4 [1.193 MB]