MOODS —  Beam Dynamics III   (28-Mar-11   16:00—17:30)
Chair: L. Merminga, TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
Paper Title Page
MOODS1 Space-Charge Effects in Bunched and Debunched Beams 85
 
  • B.L. Beaudoin, S. Bernal, K. Fiuza, I. Haber, R.A. Kishek, T.W. Koeth, P.G. O'Shea, M. Reiser, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: This work is funded by the US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office
The University of Maryland Electron Ring (UMER) is a machine designed to study high-intensity beam physics. With the application of axial fields to the bunch ends, we are able to keep a beam with an injected tune shift of 1.0, bunched over multiple turns. This is feasible with the application of tailored fields to optimally match the space-charge self-fields while minimizing the excitation of longitudinal space-charge waves. With this scheme, we have been able to extend the number of turns at the University of Maryland Electron Ring (UMER) by a factor of ten. Without the use of longitudinal focusing, head and tail effects begin to dominate, especially with the higher current beams. Time resolved measurements of the peak correlated energy spread have shown in some cases a change in the overall spread of 1.8% for the 0.6 mA beam, from the injected beam energy.
 
slides icon Slides MOODS1 [2.834 MB]  
 
MOODS2 Nonlinear Resonance Measurements and Correction in Storage Rings 88
 
  • R. Bartolini
    Diamond, Oxfordshire, United Kingdom
 
  Several theoretical and experimental techniques have been developed in recent years to correct the detrimental effect of nonlinear resonances on dynamic aperture, beam lifetime, injection efficiency and beam loss distribution. These issues are equally important in synchrotron light sources and high energy colliders. We present the latest theoretical and experimental results obtained at the Diamond light source on the characterization of the nonlinear resonances and on the comparison between the nonlinear model of the machine to the real accelerator.  
slides icon Slides MOODS2 [3.159 MB]  
 
MOODS3 Studies of RF Noise Induced Bunch Lengthening at the LHC 91
 
  • T. Mastoridis, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • P. Baudrenghien, A.C. Butterworth, J.C. Molendijk
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under contract # DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).
Radio Frequency noise induced bunch lengthening can strongly affect the Large Hadron Collider performance through luminosity reduction, particle loss, and other effects. Models and theoretical formalisms demonstrating the dependence of the LHC longitudinal bunch length on the RF station noise spectral content have been presented*,**. Initial measurements validated these studies and determined the performance limiting RF components. For the existing LHC LLRF implementation the bunch length increases with a rate of 1 mm/hr, which is higher than the intrabeam scattering diffusion and leads to a 27% bunch length increase over a 20 hour store. This work presents measurements from the LHC that better quantify the relationship between the RF noise and longitudinal emittance blowup. Noise was injected at specific frequency bands and with varying amplitudes at the LHC accelerating cavities. The experiments presented in this paper confirmed the predicted effects on the LHC bunch length due to both the noise around the synchrotron frequency resonance and the noise in other frequency bands aliased down to the synchrotron frequency by the periodic beam sampling of the accelerating voltage.
*T. Mastorides et.al., "RF system models for the LHC with Application to Longitudinal Dynamics,"
**T. Mastorides et.al., "RF Noise Effects on Large Hadron Collider Beam Diffusion"
 
slides icon Slides MOODS3 [0.644 MB]  
 
MOODS4 Dancing Bunches as van Kampen Modes 94
 
  • A.V. Burov
    Fermilab, Batavia, USA
 
  Theory of van Kampen modes is applied to bunch longitudinal motion. Case of inductive impedance domination is studied in more details. Threshold for loss of Landau damping is found to be very sensitive to fine structure of the distribution function. Good agreement with the Tevatron's "dancing bunches" is obtained.  
slides icon Slides MOODS4 [0.408 MB]  
 
MOODS5 3D Electromagnetic Design and Beam Dynamics Simulations of a Radio-Frequency Quadrupole 97
 
  • B. Mustapha, A. Kolomiets, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
During the design of the 60.635 MHz RFQ for the ATLAS efficiency and intensity upgrade*, we have established a new full 3D approach for the electromagnetic and beam dynamics simulations of a RFQ. A Detailed full 3D model (four meter long) including vane modulation was built and simulated using CST Microwave Studio, which is made possible by the ever advancing computing capabilities. The approach was validated using experimental measurements on a prototype 57.5 MHz RFQ**. The effects of the radial matchers, vane modulation and tuners on the resonant frequency and field flatness have been carefully studied. The full 3D field distribution was used for beam dynamics simulations using both CST Particle Studio and the beam dynamics code TRACK***. In the final design we have used trapezoidal modulation instead of the standard sinusoidal in the accelerating section of the RFQ to achieve more energy gain for the same length, following the leading work of the Protvino group****. In our case, the output energy increased from 260 keV/u to 295 keV/u with minimal change in the beam dynamics.
* P.N. Ostroumov et al, Proceedings of LINAC-2010
** P.N. Ostroumov et al, Proceedings of LINAC-2006
*** TRACK @ http://www.phy.anl.gov/atlas/TRACK
**** O.K. Belyaev et al, Proceedings of LINAC-2000
 
slides icon Slides MOODS5 [2.531 MB]  
 
MOODS6 Beam Dynamics Simulations on the ESS Bilbao RFQ 100
 
  • D. de Cos, I. Bustinduy, O. Gonzalez, J.L. Munoz, A. Velez
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio, Spain
  • S. Jolly, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: European Spallation Source - Bilbao
The Bilbao Accelerator RFQ is aimed to accelerate a 75 mA proton beam from 75 keV to 3 MeV, while keeping the beam both transversely and longitudinally focused, and presenting a minimum emittance growth. We report on the current status of the project, mainly focusing on the Beam Dynamics aspects of the design. Several particle simulations are carried out with RFQSIM, GPT and TRACK codes, in order to study the particle transmission of the RFQ under several circumstances, such as different current levels, vane geometry changes due to thermal stress, and different input beam characteristics obtained by changing the LEBT operation settings.
 
slides icon Slides MOODS6 [3.264 MB]