Light Sources and FELs
Dynamics 05: Code Development and Simulation Techniques
Paper Title Page
TUODS6 Optimizing RF Gun Cavity Geometry within an Automated Injector Design System 805
 
  • A.S. Hofler, P. Evtushenko
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by JSA, LLC under U.S. DOE Contract DE-AC05-06OR23177. The U.S. Govt. retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this for U.S. Govt. purposes.
RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability because EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.
 
slides icon Slides TUODS6 [0.556 MB]  
 
THP193 Study of Single and Coupled-Bunch Instabilities for NSLS-II 2483
 
  • G. Bassi, A. Blednykh
    BNL, Upton, New York, USA
 
  We study single and coupled-bunch instabilities for the NSLS-II storage ring with a recently developed parallel tracking code. For accurate modelling of the coupled-bunch instability, we investigate improvements to current point-bunch models to take into account finite bunch-size effects.