Accelerator Technology
Tech 13: Cryogenics
Paper Title Page
TUP216 Design of a Helium Phase Separator with Condenser 1214
 
  • F. Z. Hsiao, T.Y. Huang, C.P. Liu, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  This paper presents the design of a helium phase separator with volume of 100 litres. A condenser using a cryocooler for cooling is built into the phase separator to save liquid helium consumption during the test period. The heat loss to the 4.2 K inner vessel is confined within 1W due to the limited 1.5W cooling capacity from the cryocooler. Analysis of mechanical strength and heat load is illustrated.  
 
TUP217 The Application of 400KW DC Bank for Cryogenic System at NSRRC 1217
 
  • H.C. Li, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, T.F. Lin, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  There will be a power sag (>50% drop) several times and annual maintenance of power company every year that course cryogenic system shutdown and take hours to recover. We install the AC UPS to maintain a steady power supply to the control circuit and low power devices to avoid such incidences. However, the AC UPS is not suitable for the 315-kW compressor with inverter due to the harmonic distortion effect and low power factor. We built two sets of 400-kW DC UPS (also called DC Bank system) to keep two 315-kW compressor in full load operation at least 3 minutes when power sag or power cut-off in 2010. The DC Bank was parallel connect to the inverter, thus, will not affect the inverter operation when DC Bank need to maintenance or failure. This paper presents the configuration of DC Bank and the test of the system. Results show that when the inverter is operated at 242KW with main power cut off, the helium compressor is keeping stable operation for 257 seconds by DC Bank support.  
 
TUP218 Design of a Liquid Helium Transfer System for the TPS Project 1220
 
  • H.H. Tsai, M.H. Chang, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, H.C. Li, M.-C. Lin, T.F. Lin, C.P. Liu, Ch. Wang
    NSRRC, Hsinchu, Taiwan
 
  The construction of the Taiwan Photon Source (TPS) storage ring is under way, to be completed in mid 2012. The new helium cryogenic system is provided from the Linde Company, to be installed after the TPS storage ring is completed. The super conducting radio frequency (SRF) cavities is needed to maintain the electron energy of storage ring and were operated at refrigeration mode such that the cold helium gas from the cavity cryostat is returned to the refrigerator. One distribution valve box and individual segments of multichannel transfer lines is required to supply the liquid helium and liquid nitrogen to the SRF cavities and recover the gas helium and gas nitrogen back to the cryogenic system. This paper is aimed to present the configuration and design features of the LHe transfer system. The heat load and pressure drop calculation of the transfer system was also presented.  
 
TUP219 Temperature-Dependent Calibration of Hall Probes at Cryogenic Temperature 1223
 
  • M. Abliz, C.L. Doose, Y. Ivanyushenkov, I. Vasserman
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Short-period superconducting undulators (SCUs) are presently being developed for the Advanced Photon Source. Field measurements of the SCUs will be performed at 4.2 K and near 300 K, so temperature-dependent calibration of the Hall probes is necessary. The sensitivity of the Hall probes has been measured at temperatures from 5 K to 320 K over a magnetic field range of ␣1.5 T. It was found that the sensitivity increased as the temperature decreased from 300 K to about 150 K. A specially designed probe assembly, with three Hall sensors for measuring both the horizontal and vertical field components, has been calibrated. The techniques for doing the calibration and the measurement results at various temperatures will be presented.
 
 
TUP220 Cryogenic Sub-System for the 56 MHz SRF Storage Cavity for RHIC 1226
 
  • Y. Huang, D.L. Lederle, L. Masi, P. Orfin, T.N. Tallerico, P. Talty, R. Than, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz Superconducting RF Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated at 4.4K. The cavity requires an extreme quiet environment to maintain its operating frequency. The cavity besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. Liquid helium is taken from RHIC's main helium 3.5 atm, 4.9K supply header to supply this sub-system and the boil-off is return to a separate local compressor system nearby. To acoustically separate the cryogenics' delivery and return lines, a condenser/boiler heat exchanger is used to re-liquefy the helium vapor generated by the cavity. A system description and operating parameters is given about the cryogen delivery sub-system.
 
 
TUP221 Helium Pressures in RHIC Vacuum Cryostats and Relief Valve Requirements from Magnet Cooling Line Failure 1229
 
  • C.J. Liaw, R. Than, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT® model, which simulated the 4.5K/ 4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results.
 
 
TUP222 Helium Release Rates and ODH Calculations from RHIC Magnet Line Cooling Line Failure 1232
 
  • C.J. Liaw, R. Than, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT® model, which simulated the 4.5K/ 4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.
 
 
TUP223 Cryogenic System for the Energy Recovery Linac and Vertical Test Facility at BNL 1235
 
  • R. Than, D.L. Lederle, L. Masi, P. Orfin, R. Porqueddu, V. Soria, T.N. Tallerico, P. Talty, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A small cryogenic system and warm helium vacuum pumping system provides cooling to the Energy Recovery Linac's (ERL) cryomodules, a 5-cell cavity and an SRF gun, and a large Vertical Test Dewar. The system consist of a model 1660S PSI (KPS) plant, a 4000 liter storage dewar, subcooler, wet expander, 50 g/s main helium compressor and 170 m3 storage tank. A system description and operating plan is given of the cryogenic plant and cryomodules
 
 
TUP224 Cryogenic Vertical Test Facility for the SRF Cavities at BNL 1238
 
  • R. Than, I. Ben-Zvi, A. Burrill, M.C. Grau, D.L. Lederle, C.J. Liaw, G.T. McIntyre, D. Pate, R. Porqueddu, T.N. Tallerico, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A vertical facility has been constructed to test SRF cavities and can be utilized for other use. The liquid helium volume for the large vertical dewar is approximate 84 inches tall by 40 inches diameter with a working clear inner diameter of 38 inch with the inner cold magnetic shield system installed. For radiation enclosure, the test dewar is situated inside a concrete block structure. The structure is above ground and is accessible from the top, and has a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth is also available for testing of smaller cavities in 2 smaller dewars.
 
 
TUP225 Overview of Recent Studies and Modifications Being Made to RHIC to Mitigate the Effects of a Potential Failure to the Helium Distribution System 1241
 
  • J.E. Tuozzolo, D. Bruno, A. Di Lieto, G. Heppner, R. Karol, E.T. Lessard, C.J. Liaw, G.T. McIntyre, C. Mi, J. Reich, J. Sandberg, S.K. Seberg, L. Smart, T.N. Tallerico, R. Than, C. Theisen, R.J. Todd, R. Zapasek
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel via a series of distribution and return lines. The worst case for failure would be a release from the magnet distribution line, which operates at 3.5 to 4.5 atmospheres and contains the energized magnet bus. Should the bus insulation system fail or an electrical connection open, there is the potential for releasing up to 70 MJoules of stored energy. Studies were done to determine release rate of the helium and the resultant reduction in O2 concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for reliability and the effects of 10 years of operations. Modifications were made to reduce the likelihood of failure and to reduce the amount of helium gas that could be released into tunnels and service buildings while personnel are present. This paper describes the issues reviewed, the steps taken, and remaining work to be done to reduce the hazards.
 
 
WEOCS5 Experience of the Cryogenic System for Taiwan Light Source 1466
 
  • F. Z. Hsiao, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  In Taiwan light source a superconductive cavity and five superconductive magnets are installed in the storage ring. The cryogenic system provides liquid helium and liquid nitrogen with stable pressure. Failure events occurred on the components such as expansion turbine, compressor, and frequency inverter during the past years. A supervision system was developed to monitor the status of the cryogenic system and an automatic call out system was built to notify the operators when abnormal condition appears. To shorten the interruption period of liquid helium supply, the dewar keeps stable and continuous supply of liquid helium and the recovery compressor collets the evaporated helium gas from the cryostat for cases of several hours shutdown of the cryogenic system. Humidity, cleanliness and helium leak tightness are items necessary to be well controlled before connecting new components or application devices to the cryogenic system. The matching between system cooling capacity and heat load is achieved via adjustment of turbine speed, precooling temperature, compressor speed, and heater power.  
 
WEOCS6 The Injector Cryomodule for e-Linac at TRIUMF 1469
 
  • R.E. Laxdal, C.D. Beard, S.R. Koscielniak, A. Koveshnikov, A.K. Mitra, T.C. Ries, I. Sekachev, V. Zvyagintsev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • M. Mondal, V. Naik
    DAE/VECC, Calcutta, India
 
  The e-Linac project at TRIUMF, now funded, is specified to accelerate 10mA of electrons to 50MeV using 1.3GHz multi-cell superconducting cavities. The linac consists of three cryomodules; an injector cryomodule with one cavity and two accelerating modules with two cavities each. The injector module is being designed and constructed in collaboration with VECC in Kolkata. The design utilizes a unique box cryomodule with a top-loading cold mass. A 4K phase separator, 2K-4K heat exchanger and Joule-Thompson valve are installed within each module to produce 2K liquid. The design and status of the development will be presented.  
slides icon Slides WEOCS6 [13.002 MB]