Accelerator Technology
Tech 02: Lepton Sources
Paper Title Page
TUP017 Conceptual Design for the ARIEL 300 keV Electron Gun 847
 
  • C.D. Beard, F. Ames, S. Austen, R.A. Baartman, Y.-C. Chao, K. Fong, C. Gong, N. Khan, S.R. Koscielniak, A. Laxdal, R.E. Laxdal, C.D.P. Levy, D. Louie, J. Lu, L. Merminga, A.K. Mitra, D. Rowbotham, P. Vincent, D. Yosifov
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.K. Sinclair
    CLASSE, Ithaca, New York, USA
 
  The Advanced Rare Isotope Laboratory (ARIEL) at TRIUMF is a facility that will augment existing programs at ISAC. ARIEL was funded in July 2010. Products from the complementary methods of proton-driven and bremsstrahlung-driven fission will be available for nuclear and materials science. Equipment for the photofission driver is the subject of this paper: a high-intensity electron beam provided by a high-voltage electron source (or e-gun) will be accelerated in a superconducting linear accelerator, and guided to a γ-ray convertor and actinide target assembly. The electron source is a 10 mA 300 keV thermionic gun, with a control grid for modulation of the beam. This paper describes the conceptual design of the gun, and highlights some of the progress made in the engineering design. First beam from the gun is anticipated in early 2012.  
 
TUP018 Design of a S-Band 4,5 Cells RF Gun 850
 
  • R. Roux, C. Bruni, H. Monard
    LAL, Orsay, France
 
  Most of radio-frequency (RF) photo-injectors operating in the world are made of 1,5 or 2,5 cells. Although excellent qualities of electron beam have been obtained there are few cases where the extension of the number of cells could be interesting. For instance, the small accelerators with energy in the range of 10-20 MeV which are mostly based on the operation of a RF gun with a booster. One single RF gun fulfilling both functions would simplify the construction and the cost of such machines. The inherent simplicity would also ensure a better reliability. We will present 2D and 3D RF simulations of this 4,5 cells RF photo-injector. In addition we will compare through beam dynamics simulations, with the PARMELA and ASTRA codes, the performances of this gun with respect of classical design based on the couple RF gun plus booster.  
 
TUP019 The S-DALINAC Polarized Injector SPIN - Performance and Results 853
 
  • C. Eckardt, T. Bahlo, P. Bangert, R. Barday, U. Bonnes, M. Brunken, C. Burandt, R. Eichhorn, J. Enders, M. Espig, C. Ingenhaag, J. Lindemann, M. Platz, Y. Poltoratska, M. Roth, F. Schneider, H. Schüßler, M. Wagner, A. Weber, B. Zwicker
    TU Darmstadt, Darmstadt, Germany
  • W. Ackermann, W.F.O. Müller, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: * Work supported by DFG through SFB 634.
At the superconducting 130 MeV Darmstadt electron linac S-DALINAC the new source of polarized electrons uses a GaAs cathode illuminated with pulsed Ti:Sapphire and diode laser light. The electron source had been set up and commissioned at a test stand with a beam line where a Wien filter for spin manipulation, a Mott polarimeter for polarization measurement and a chopper-prebuncher system were part of the system. Upon completion of the tests, test stand and beam line were dismantled and re-installed at the S-DALINAC. The new photo injector opens up the potential for experiments with polarized electron and photon beams for nuclear structure studies at low momentum transfers. Various polarimeters will be installed at all experimental sites to monitor the beam polarization. We report on the S-DALINAC, the results from the teststand performance, the implementation of the polarized source and the polarimeter research and development.
* A. Richter, Proc. of the 5th EPAC, Sitges (1996) 110
** Y. Poltoratska et al., AIP Conference Proc. 1149 (2009) 983
*** P. Mohr et al., Nucl. Instr. and Meth. A423 (1999) 480
 
 
TUP020 A New Continuous Muon Beam Line Using a Highly Efficient Pion Capture System at RCNP 856
 
  • H. Sakamoto, Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • S. Cook, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • M. Fukuda, K. Hatanaka
    RCNP, Osaka, Japan
  • T. Ogitsu, A. Yamamoto, M.Y. Yoshida
    KEK, Ibaraki, Japan
 
  A new muon source with continuous time structure is under construction at Research Center of Nuclear Physics (RCNP), Osaka University. The ring cyclotron of RCNP can provide 400W 400MeV proton beam. Using this proton beam, the MuSIC produces a high intense muon beam. The target muon intensity is 108 muons/second, which is achieved by a pion capture with great efficiency to collect pions and muons using a solenoidal magnetic field. A pion production target system is located in a 3.5 Tesla solenoidal magnetic field generated by a super-conducting solenoid magnet. The proton beam hits the target, and backward pions and muons are captured by the field. Then they are transported by a curved solenoid beam line to experimental apparatus. The construction has been started in 2010, and would be finished in 5 years. We plan to carry out not only an experiment to search the lepton flavor violating process but also other experiments for muon science and their applications using the intense muon beam.  
 
TUP023 X-Band RF Photoinjector Research and Development at LLNL 859
 
  • R.A. Marsh, S.G. Anderson, C.P.J. Barty, G.K. Beer, R.R. Cross, G.A. Deis, C.A. Ebbers, D.J. Gibson, F.V. Hartemann, T.L. Houck
    LLNL, Livermore, California, USA
  • C. Adolphsen, A.E. Candel, T.S. Chu, E.N. Jongewaard, Z. Li, C. Limborg-Deprey, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks, F. Wang, J.W. Wang, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded by DHS Domestic Nuclear Detection Office
In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test station is being developed to investigate accelerator optimization for future upgrades. This test station will enable work to explore the science and technology paths required to boost the current mono-energetic gamma-ray (MEGa-Ray) technology a higher effective repetition rate, potentially increasing the average gamma-ray brightness by two orders of magnitude. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Beam quality must be exceedingly high in order to produce narrow-bandwidth gamma-rays, requiring a robust state of the art photoinjector. The photoinjector will be a high gradient (200 MV/m cathode field) standing wave structure, featuring a dual feed racetrack coupler, elliptical irises, and an optimized first cell length. Detailed design of the rf photoinjector for this test station is complete, and will be presented with modeling simulations, and layout plans.
 
 
TUP025 Two Wien Filter Spin Flipper 862
 
  • J.M. Grames, P.A. Adderley, J. F. Benesch, J. Clark, J. Hansknecht, R. Kazimi, D. Machie, M. Poelker, M.L. Stutzman, R. Suleiman, Y. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.
* http://hallaweb.jlab.org/parity/prex/
** http://www.jlab.org/qweak/
*** http://hallaweb.jlab.org/12GeV/Moller/
 
 
TUP092 Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies 1003
 
  • G.M. Kazakevich, G. Flanagan, R.P. Johnson, M.L. Neubauer, R. Sah
    Muons, Inc, Batavia, USA
  • K.C.D. Chan, A.J. Jason, S.S. Kurennoy, H.M. Miyadera, P.J. Turchi
    LANL, Los Alamos, New Mexico, USA
  • A. Moretti, M. Popovic, K. Yonehara
    Fermilab, Batavia, USA
  • Y. Torun
    IIT, Chicago, Illinois, USA
 
  Funding: Supported by DOE grant DE-FG-08ER86352.
An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate in vacuum or under pressure to 100 atmospheres, at room temperature or in an LN2 bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Performance of the cavity, including initial conditioning and operation in the external magnetic field will be reported.
 
 
WEOBS2
Synchronization of X-Rays and Lasers for Pump-Probe Experiments at Ultrafast Light Sources  
 
  • J.M. Byrd
    LBNL, Berkeley, California, USA
 
  Funding: Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and DE-AC02-76SF00515.
The scientific potential of femtosecond x-ray pulses at Linac-driven FELs is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. To achieve this, precise synchronization is required between the arrival time diagnostic and the laser, which are often separated by hundreds of meters. The speaker will report on the present state of an effort to reach femtosecond level synchronization as well as discuss future directions.
 
slides icon Slides WEOBS2 [6.241 MB]  
 
WEODS3 CEBAF 200 kV Inverted Electron Gun 1501
 
  • J.M. Grames, P.A. Adderley, J. Clark, J. Hansknecht, M. Poelker, M.L. Stutzman, R. Suleiman, K.E.L. Surles-Law
    JLAB, Newport News, Virginia, USA
  • M. BastaniNejad
    Old Dominion University, Norfolk, Virginia, USA
  • J.L. McCarter
    UVa, Charlottesville, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. In addition, DOE-HEP funds this work in support of the ILC R&D program.
Two DC high voltage GaAs photoguns have been built at Jefferson Lab based on a compact inverted insulator design. One photogun provides the polarized electron beam at CEBAF and operates at 130 kV bias voltage. The other gun is used for high average current lifetime studies at a dedicated test facility and has been operated at bias voltage up to 225 kV. The advantages of higher DC voltage for CEBAF include reduced space-charge emittance growth and the potential for prolonged photocathode lifetime. However, a consequence of operating at higher voltages is the increased likelihood of field emission or breakdown, both of which are unacceptable. Highlights of the R&D studies leading toward a production 200keV GaAs photogun for CEBAF will be presented.
 
slides icon Slides WEODS3 [1.360 MB]  
 
WEODS4 High Gradient Normal Conducting Radio-Frequency Photoinjector System for Sincrotrone Trieste 1504
 
  • L. Faillace, R.B. Agustsson, P. Frigola
    RadiaBeam, Santa Monica, USA
  • H. Badakov, A. Fukasawa, J.B. Rosenzweig, A. Yakub
    UCLA, Los Angeles, California, USA
  • F. Cianciosi, P. Craievich, M. Trovò
    ELETTRA, Basovizza, Italy
  • L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Radiabeam Technologies is leading a multi-organizational collaboration by UCLA, INFN and MATS to deliver a high gradient normal conducting radio frequency (NCRF) 1.6 cell photoinjector system to the Sincrotrone Trieste facility. Designed to operate with a 120MV/m accelerating gradient, this dual feed, fat lipped racetrack coupler design is modeled after the LCLS photoinjector with a novel demountable cathode which permits cost effective cathode exchange. Full overview of the project to date will be discussed along with basic, design, engineering, manufacturing and RF test results.  
slides icon Slides WEODS4 [3.186 MB]