Author: Wu, J.
Paper Title Page
THP146 Preliminary Study of Terahertz Free-Electron Laser Oscillator Based on Electrostatic Accelerator 2393
 
  • A.L. Wu, Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • F. Wang, J. Wu
    SLAC, Menlo Park, California, USA
 
  Since the terahertz radiation sources provide wide applications in medical, industrial and material science, a compact, wavelength tunable and high-power THz source attracted much attention in many laboratories. In this paper, we give a primary study of a compact THz FEL based on electrostatic accelerator and the choice of basic design parameters is presented. The feasibility study is carried out using FELO codes. It is proved that FEL utilizing electrostatic accelerators (EA-FEL) will be a promising compact and powerful terahertz source.  
 
THP168 FEL Beam Stability in the LCLS* 2423
 
  • J.L. Turner, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, Y. Feng, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, K. Horovitz, Z. Huang, R.H. Iverson, D. Kharakh, A. Krasnykh, J. Krzywinski, H. Loos, M. Messerschmidt, S.P. Moeller, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: *This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
During commissioning and operation of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center electron and x-ray beam size, shape, centroid motion have been studied. The studies, sources, and remediation are summarized in this paper.
 
 
THP184 Tuning of the LCLS Linac for User Operation 2462
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, Z. Huang, R.H. Iverson, N. Lipkowitz, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, T.J. Smith, J.L. Turner, J.J. Welch, W.E. White, J. Wu, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515.
With the Linac Coherent Light Source (LCLS) now in its third user run, reliable electron beam delivery at various beam energies and charge levels has become of high operational importance. In order to reduce the beam tuning time required for such changes, several diagnostics and feed-forward procedures have been implemented. We report on improved lattice diagnostics to detect magnet, model, and diagnostics errors as well as on measurements of transverse RF kicks and static field contributions and corresponding correction procedures to facilitate beam energy changes.