Author: Westfall, M.T.
Paper Title Page
MOP102 High-Gradient High-Energy-Gain Inverse Free Electron Laser Experiment using a Helical Undulator 289
 
  • J.P. Duris, R.K. Li, P. Musumeci, E.W. Threlkeld, M.T. Westfall
    UCLA, Los Angeles, California, USA
 
  Funding: UC Lab fee award 09-LR-04-117055-MUSP DOE-HEP grant DE-FG02-92ER40693 Defense Threat Reduction Agency, Basic Research Award # HDTRA1-10-1-0073
Preparations for a high energy gain inverse free electron laser (IFEL) experiment using an undulator and Brookhaven National Lab’s (BNL) Accelerator Test Facility’s (ATF) terawatt CO2 laser are underway. 3D simulations suggest that the experiment will likely accelerate a 50 MeV beam to 117 MeV in 54 cm while maintaining a low energy spread. The helical undulator is currently under construction at UCLA’s Particle Beam Physics Laboratory.
 
 
WEP289 The Impact of Laser Polarization in Multiphoton Photoemission from a Copper Cathode 2026
 
  • R.K. Li, J.T. Moody, P. Musumeci, C.M. Scoby, H.L. To, M.T. Westfall
    UCLA, Los Angeles, California, USA
 
  Multiphoton photoemission from a copper cathode has been recently demonstrated to be a simple and efficient method to generate high quality electron beams. To further improve this scheme to achieve higher charge yielding efficiency and lower intrinsic emittance, we explored the effects of laser polarization at oblique incidence. Charge yields of s and p polarization from coated and uncoated cathodes were measured. The vectorial photoelectric effect was observed on the uncoated cathode but much less evident on the coated one, suggesting that surface properties are critical to the vectorial effect and in general important in photoemission. The results not only are useful in the optimization of an rf photoinjector, but also allow deeper understanding of the photoemission physics.
* P. Musumeci et al., Phys. Rev. Lett. ZeHn4, 084801 (2010).
** P. Musumeci et al., Phys. Rev. Lett. ZeHn0, 244801 (2008).