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magnets with the worst non uniform magnetization by 
comparing field measurements which should be identical 
given a geometrical symmetry. The magnets are then 
epoxied into precisely cut holders which attach to tuning 
plates used to adjust the undulator gap by +/- 50 µm on 
each side. 

SIMULATIONS 

Method 
 

For full three dimensional simulations of the evolution 
of both the beam as well as the radiation, we adapted the 
free electron laser (FEL) simulation code Genesis 1.3. 
The software incorporates electron beams, laser radiation, 
and undulator fields with or without constant tapering. It 
also allows input and output of beam and radiation 
profiles for iterative simulations and takes into account 
the energy transfer between the particles and the 
radiation—both of which are useful for our IFEL 
simulations. 

Since each consecutive period of the undulator has 
different wavelengths and magnetic field amplitudes, we 
used a novel approach to simulate the IFEL interaction 
whereby we segmented the undulator into its various 
periods and propagated the beam through each segment 
sequentially. We first had Genesis create initial Gaussian 
laser and electron distributions and then propagated them 
through the first undulator period. The resulting output 
radiation and beam profiles were then fed into the next 
undulator period and so on as the beam continued through 
the undulator. The simulations were time independent to 
simulate beam and laser envelopes longer than a 
wavelength. 

 
Results 

 

The parameters and results of the simulation are 
summarized in Table 1. The initial beam’s transverse 
profiles were chosen to be Gaussian with an rms width of 
200 µm, and the beam itself was distributed uniformly 
over ponderomotive phase with a normally distributed 
energy centered on 50 MeV and energy spread of 0.1% 
(fig. 2). About one fourth of the simulated beam was 
accelerated to a final energy of 117 MeV over the 11 
periods of the 54 cm long undulator for an average 
accelerating gradient of 124 MeV/m (fig. 3). The 
accelerated fraction is well separated in energy from the 
rest of the beam. Although the CO2 laser for this 
experiment can produce 1 TW of power, the undulator 
was optimized for a more conservative value of 0.6 TW to 
allow for a margin of error. Furthermore, the intensity can 
be increased further by focusing the laser spot size if 
needed.   

 
Beam Loading 

 

The iterative simulation approach allowed us to 
simulate the evolution of the laser radiation profile as its 
energy was absorbed by electrons as well as see how the 
system responds to heavy beam loading. As the electrons 

absorb the laser energy, we expect that higher beam 
currents should reduce the available power available for 
acceleration. As expected, the net surviving laser power 
decreases as the beam current increases (fig. 4). 

Since the beam is localized within a small region of the 
radiation, the laser intensity close to the beam may 
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Figure 2: Initial beam phase space occupation. Inset 
histogram of beam energies shows a normal 
distribution of energy with mean of 50MeV and width 
of 0.1%. 
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Figure 3: Final beam phase space occupation. 
Accelerated fraction is well separated in phase and 
energy. 

Figure 4: Both fraction accelerated and surviving 
laser power decrease with increasing beam current as 
electrons absorb the laser energy. 
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deplete significantly. For beam current around 1kA, no 
significant radiation depletion is observed; however, laser 
intensity near the beam may decrease by 10% for 5kA 
beam load and as much as 25% for 10kA (fig. 5). This 
causes the fraction of electrons trapped in the accelerating 
bucket to decrease for higher currents (fig. 4). 

In order to improve the efficiency of the accelerator in 
the future, we are investigating ways of recycling or 
amplifying laser power to eliminate these depletion 
regions.  

TESTING 
As soon as the undulator’s construction is complete, its 

on axis field will be measured with a motorized hall probe 
and wire pulser. After the magnets' gaps are adjusted to 
smooth out the on axis field on axis, the undulator will be 

tested at Brookhaven National Lab’s Accelerator test 
Facility in a test beam this June. 
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1kA 5kA 10kA 

Figure 5: Transverse profile of laser intensity after IFEL interaction normalized to peak intensity. Beams with more
charge erode away the intensity of the center of the laser. The electron beams’ root mean square radius for each case is
100 µm Transverse coordinates are measured in mm.
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