Paper | Title | Page |
---|---|---|
WEP226 | Commissioning Results of the ReA RFQ at MSU* | 1912 |
|
||
Funding: Project funded by Michigan State University The Facility for Rare Isotope Beams (FRIB) is currently in the preliminary design phase at Michigan State University (MSU). FRIB consists of a driver LINAC for the acceleration of heavy ion beams, followed by a fragmentation target station and a ReAccelerator facility (ReA3). ReA3 comprises gas stopper systems, an Electron Beam Ion Trap (EBIT) charge state booster, a room temperature radio frequency quadrupole (RFQ), a LINAC using superconducting quarter wave resonators and an achromatic beam transport and distribution line to the new experimental area. Beams from ReA3 will range from 3 MeV/u for heavy ions to about 6 MeV/u for light ions. The ReA3 RFQ, which is of the 4 rod type, is designed to accelerate ions with an Q/A of 0.2 to 0.5 from 12 keV/u to 600 keV/u. The RFQ operates at a frequency of 80.5 MHz and power levels up to 120 kW at 10% duty factor. In this paper we will report on commissioning results from the ReA3 RFQ using a H2+ and He+ beam from an auxiliary ion source. |
||
FROBN2 | Technical Challenges in Design and Construction of FRIB | 2561 |
|
||
Funding: Work supported by DOE CA DE-SC0000661 and Michigan State University. The Facility for Rare Isotope Beams (FRIB) will be a world-leading, DOE national users facility for the study of nuclear structure, reactions and astrophysics on the campus of Michigan State University. A superconducting, heavy-ion, driver linac will be used to provide stable beams of >200 MeV/u at beam powers up to 400 kW (~650 electrical micro-amps for uranium) that will be used to produce rare isotopes by in flight fragment separation. The selected rare isotopes will be used at velocity (~0.5 c), stopped, or reaccelerated. FRIB is a challenging technical project. An overview of the project, project challenges, and mitigating strategies will be presented. |
||
![]() |
Slides FROBN2 [14.690 MB] | |