

### Technical Challenges in Design and Construction of Facility for Rare Isotope Beam (FRIB)

Richard York Technical Director





### Outline

- Project numbers
- Science
- Facility overview
- FRIB by parts
- Summary



### **FRIB Project Numbers**

#### June 2009

- Cooperative Agreement (DOE Contract with MSU)
- July 2010
  - Conceptual Design Report
- August 2010
  - CD-1 (Approve Alternative Selection and Cost Range)
- June 2012 (planned)
  - CD-2 (Approve Performance Baseline)
- 2020
  - CD-4 (Project Complete)
  - 2018 (early finish)



### **Domain of FRIB Research**



### High Beam Rates are Needed to Do the Science

Next-generation high-power (>100 kW) RIB facilities are the key





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

# Fast, stopped, and reaccelerated beams are needed to do the science

- Fast beams (>100 MeV/u) F
  - Farthest reach from stability, nuclear structure, limits of existence, EOS of nuclear matter
- Stopped beams (0-100 keV)
  - Precision experiments masses, moments, symmetries
- Reaccelerated beams R (0.2-20 MeV/u)
  - Detailed nuclear structure studies, high-spin studies
  - Astrophysical reaction rates





### Production of Rare Isotopes at Rest Isotope Separation On Line (ISOL technique)

Not in baseline but potential for implementation maintained

 Bombard a thick target of heavy nuclei with energetic light particles, e.g. 1 GeV protons, to achieve random removal of protons and neutrons or fission

2. Extract rare isotopes from the target material by diffusion or effusion; ionize and accelerate them to the desired energy \ beam of high quality



#### Production of Rare Isotopes in Flight Baseline Approach

1. Accelerate heavy ion beam to high energy and pass through a thin target to achieve random removal of protons and neutrons in flight





### **FRIB Rare Isotope Beams**





### **FRIB Specifications**

#### Baseline

- Driver Linac
  - Stable ions up to <sup>238</sup>U
  - Energies ≥200 MeV/u
  - Beam power ≤400kW
- Production Target and Fragment Separator System
- Experimental systems for experimental program use rare isotopes
  - At velocity (~0.5c) (Fast)
  - Stopped
  - Reaccelerated
- Maintain upgrade options
- Energy upgrade to ≥400 MeV/u for <sup>238</sup>U
- ISOL target system & light-ion injector



### Present NSCL Facility Offers Substantial Advantages & Challenge



- Minimal perturbation of the experimental area when transitioning from NSCL to FRIB operations
- Post-production elements commissioned before FRIB driver linac complete - ensures world-class scientific research program at start of FRIB operation



### **Challenge - Configuration**



#### Many geometries possible

- Driven by minimum cost meeting baseline and maintaining upgrade potential
- Compact geometry best





#### Welcome to Michigan State University 57,000 people; 36 sq mi; \$1.8B annual revenue; 552 buildings





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### **FRIB on Campus**



### **FRIB** Layout





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### **Facility Layout**



### Challenge – Conventional Construction Cost



FR

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

Michigan State University

Site tunnel to allow open cut – minimize earth retention (reduced cost)

Support buildings directly above tunnel

- Controlled area reduced
- shielding less depth reduced cost
- Routing from tunnel to support more efficient - reduced cost
- Tunnel support columns maintain integrity at reduced cost
- Cryoplant proximity reduced cost
  microphonics ok using commercial dampers for rotating machinery



### **Driver Linac**

**Compact layout to** minimize conventional construction costs

#### **Primary Segments**

- Front end
- Three superconducting linac segments
- Two folding sections
- Beam delivery system to fragmentation target



### **Driver Linac**





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### **FRIB Driver Linac Performance**





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### **Driver Linac Front End**







Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### **Front End Challenges**

#### Heavy ion currents sufficient for 400 kW

 Two charge-states for heavier ions (~>Xe) (e.g. 33+ & 34+ for U)

# Multi-charge state beams increase effective longitudinal emittance

- Create & maintain low longitudinal emittance by
  - Bunching in LEBT external to RFQ
  - MEBT providing 6-D Match into superconducting linac





### **Driver Linac Segment 1**





**Facility for Rare Isotope Beams** U.S. Department of Energy Office of Science Michigan State University

### Linac Segment 1 Challenges

## 80.5 MHz λ/4 resonator performance

- Operate at 2 K (as opposed to 4.5 K)
  - Reduces "Q-slope"
  - Reduces microphonics by more stable He bath pressure

#### Low energy beam – central trajectory sensitivity

- Warm region for diagnostics: 0.38 m
- Cold BPMs near each solenoid under evaluation







### **Driver Linac Folding Segment 1**



- efficiency
  - Stripping energy: ~ 16.6 MeV/u
- Charge selection
  - Stripping to 5 charge states for U -76+ to 80+, 5
- 6-D matching to Linac Segment 2
  - Single frequency change 80.5 to 322 MHz



Matching Cryomodules

### Folding Segment 1 Challenges [1]

#### Need to strip beam with high power density (~kW/mm<sup>2</sup>, ~MW/mm<sup>3</sup>)

- Liquid Li stripper R&D at ANL
  - Demonstrated reasonable parameters ion beam tests remain
- He gas contained by plasma windows – 2<sup>nd</sup> alternative
  - R&D at BNL underway
  - Lower charge state than Li space provided for 3 additional cryomodules





Facility for Rare Isotope Be U.S. Department of Energy Office of Science Michigan State University

### Folding Segment 1 Challenges [2]

#### Need to collimate beam with high power density (~kW/mm<sup>2</sup>, ~MW/mm<sup>3</sup>)

- Routine continuous losses of ~10 kW
  - E.G. Accelerate 5 charge states of U -~10 kW of beam power in other charge states
- Production target challenge similar

FR

 Engineering design under development for collimator using two rotating wheels following production target design

~1 cm



### **Driver Linac Segment 2**



- λ/2 cryomodules 322 MHz
- Uranium beam acceleration
  - From ~16.4 MeV/u to ~149 MeV/u
- Warm region: 0.38 m
  - BPMs and other beam diagnostics devices

#### Challenge

- $\lambda/2$  performance
  - Space for additional cryomodules in Linac Segment 3



β=0.285

13 Cryomodules

β=0.530

12 Cryomodules

Beam

### **Driver Linac Folding Segment 2**

- Multi-charge state beams
- 180 degree beam direction change
- No charge stripping

#### Challenges

- Tunnel width set by bend diameter
  - Need to minimize bend diameter while retaining beam quality
- Large momentum spread from multi-charge states & dispersive regions require high magnetic field quality



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University



### **Driver Linac Segment 3**

ragmentation Target

Beam

T.3.11 Beam Delivery Sys

..............................

T.3.7 Folding Segment 1

- λ/2 cryomodules
- Uranium beam acceleration:
  - From ~149 to ~ 200 MeV/u
- Transverse focusing
  - SC solenoids with dipole correctors
- Warm region: 0.38 m
  - BPMs and other beam diagnostics devices

#### Challenges

- λ/2 performance & possible lower charge states if He in lieu of Li stripper is required
- Both met by providing additional space for up to 12 cryomodules



50 meter

T.3.9 Folding Sear

β=0.530

6 Cryomodules

### **Driver Linac SRF Cavities**

- Only 4 cavity types
- I frequency transition (between Linac Segment 1 and 2)



### **Driver Linac SRF Cavities Challenges**

#### Complex (compared to e.g. elliptical) geometry – more challenging

- To manufacture
  - Technology transfer program
- To process & operate
  - R&D and systems testing
  - ReA3 utilizing 15 of λ/4 cavities provides test bed
  - λ/2 β=0.53
    - » 5 under test
    - » Prototype systems test 2011
  - $\lambda/2 \beta = 0.29$  follow from  $\beta = 0.53$





### **Driver Linac Beam Delivery System**

868 × 88 6 64

- Deliver multi-charge state beams to a single fragmentation target
- Beam size required on fragmentation target ~ 1mm
- Satisfy possible upgrade path
  - Higher beam energy
  - Multiple targets

#### Challenge

 90% of particles within 1mm spot size given multi-charge state momentum spread





### **End-to-End Beam Simulations**



### **Experimental Systems**

- Rare isotope production with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Experimental areas and scientific instrumentation for fast, stopped and reaccelerated beams

#### Production target facility + fragment separator





### **FRIB Beam Production Facilities**



Michigan State University

### **Beam Production Challenges [1]**

Select rare isotopes with high efficiency and high beam purity in high radiation environment

Design

- Pre-separator with remote handling capability for 1<sup>st</sup> separation & to have highest radiation in confined area
- Optics design uses 3 stage separation high purity





### **Beam Production Challenges [2]**

# High power density at production target and beam dump

- Production target rotating graphite
  - Up to 200 kW beam power
- Beam dump
  - Up to 400 kW beam power







**Facility for Rare Isotope Beams** U.S. Department of Energy Office of Science Michigan State University

### **Science-Driven Upgrade Options Remain**





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### Summary

#### FRIB challenges identified and mitigated (or in process of)

- Linac 400 kW beam power for heavier ions multi-charge state acceleration
- High power density from heavy ion / matter interaction
  - Linac stripper & charge selection R&D
  - Production target & beam dump R&D
- Linac beam energy & quality
  - Linac accelerating cavity performance R&D
  - 90% of beam within 1mm on production target end-to-end simulations
- Facility near NSCL
  - Layout provides baseline and maintains upgrade potential

