Author: Smith, K.S.
Paper Title Page
MOOCN3 RHIC Polarized Proton Operation 41
 
  • H. Huang, L. A. Ahrens, I.G. Alekseev, E.C. Aschenauer, G. Atoian, M. Bai, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, W.W. MacKay, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, D. Smirnov, K.S. Smith, D. Steski, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper.
 
slides icon Slides MOOCN3 [2.331 MB]  
 
MOP203 RHIC Spin Flipper AC Dipole Controller 474
 
  • P. Oddo, M. Bai, W.C. Dawson, D.M. Gassner, M. Harvey, T. Hayes, K. Mernick, M.G. Minty, T. Roser, F. Severino, K.S. Smith
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract DE-AC02-98CH10886 with the U.S. Department of Energy and RIKEN, Japan.
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to control and dynamically tune the magnets. The current implementation and results will be presented.
 
 
MOP282 A Deterministic, Gigabit Serial Timing, Synchronization and Data Link for the RHIC LLRF 642
 
  • T. Hayes, F. Severino, K.S. Smith
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A critical capability of the new RHIC low level rf system is the ability to synchronize signals across multiple locations. The Update Link provides this functionality. The Update Link is a deterministic serial data link based on the Xilinx Aurora protocol that is broadcast over fiber optic cable at 1 gigabit per second. The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources.
 
 
MOP283 A Hardware Overview of the RHIC LLRF Platform 645
 
  • T. Hayes, K.S. Smith
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The RHIC LLRF platform is a flexible, modular system designed around a carrier board with six XMC daughter sites. The carrier board features a Xilinx FPGA with an embedded, hard core Power PC that is remotely reconfigurable. It serves as a front end computer (FEC) that interfaces with the RHIC control system. The carrier provides high speed serial data paths to each daughter site and between daughter sites as well as four generic external fiber optic links. It also distributes low noise clocks and serial data links to all daughter sites and monitors temperature, voltage and current. To date, two XMC cards have been designed: a four channel high speed ADC and a four channel high speed DAC.
 
 
MOP284 A High Performance DAC / DDS Daughter Module for the RHIC LLRF Platform 648
 
  • T. Hayes, M. Harvey, G. Narayan, F. Severino, K.S. Smith, S. Yuan
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities.
 
 
MOP296 Embedded System Architecture and Capabilities of the RHIC LLRF Platform 672
 
  • F. Severino, M. Harvey, T. Hayes, L.T. Hoff, R.C. Lee, A. Marusic, P. Oddo, K.S. Smith, K.L. Unger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A high performance FPGA based platform has been developed for the RHIC Low Level RF system upgrade, and is now replacing our aging VME based systems. This new platform employs a sophisticated embedded architecture to implement its core functionality. This architecture provides a control system interface, manages remote access to all configuration parameters and diagnostic data, supports communication between all system components, enables real time application specific processing, monitors system health, etc. This paper will describe the embedded architecture and its capabilities, with emphasis on its application at RHIC.
 
 
MOP297 A Bunch to Bucket Phase Detector for the RHIC LLRF Upgrade Platform 675
 
  • K.S. Smith, M. Harvey, T. Hayes, G. Narayan, S. Polizzo, F. Severino
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
As part of the overall development effort for the RHIC LLRF Upgrade Platform, a 4 channel ADC daughter module was developed to provide high speed, wide dynamic range digitizing and processing of signals from DC to several hundred megahertz. The first operational use of this card was to implement the bunch to bucket phase detector for the RHIC LLRF beam control feedback loops. This paper will describe the design and performance features of this daughter module as a bunch to bucket phase detector, and also provide an overview of its place within the overall LLRF platform architecture as a high performance digitizer and signal processing module suitable to a variety of applications.
 
 
MOP298 Commisioning Results from the Recently Upgraded RHIC LLRF System 678
 
  • K.S. Smith, M. Harvey, T. Hayes, G. Narayan, F. Severino, S. Yuan, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform.
 
 
MOP299 Commissioning and Performance of the BNL EBIS LLRF System 681
 
  • S. Yuan, M. Harvey, T. Hayes, G. Narayan, F. Severino, K.S. Smith, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron Beam Ion Source (EBIS) LLRF system utilizes the RHIC LLRF upgrade platform to achieve the required functionality and flexibility. The LLRF system provides drive to the EBIS high-level RF system, employs IQ feedback to provide required amplitude and phase stability, and implements a cavity resonance control scheme. The embedded system provides the interface to the existing Controls System, making remote system control and diagnostic possible. The flexibility of the system allows us to reuse VHDL codes, develop new functionalities, improve current designs, and implement new features with relative ease. In this paper, we will discuss the commissioning process, issues encountered, and performance of the system.
 
 
WEOBN5 Concept and Architecture of the RHIC LLRF Upgrade Platform 1410
 
  • K.S. Smith, T. Hayes, F. Severino
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The goal of the RHIC LLRF upgrade has been the development of a stand alone, generic, high performance, modular LLRF control platform, which can be configured to replace existing systems and to serve as a common platform for all new RF systems. The platform is also designed to integrate seamlessly into a distributed network based controls infrastructure, be easy to deploy, and to be useful in a variety of digital signal processing and data acquisition roles. Reuse of hardware, software and firmware has been emphasized to minimize development effort and maximize commonality of system components. System interconnection, synchronization and scaling is facilitated by a deterministic, high speed serial timing and data link, while standard intra and inter chassis communications utilize high speed, non-deterministic protocol based serial links. System hardware configuration is modular and flexible, based on a combination of a main carrier board which can host up to six custom or commercial daughter modules as required to implement desired functionality. This paper will provide an overview of the platform concept, architecture, features and benefits.
 
slides icon Slides WEOBN5 [31.462 MB]  
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.