Author: Siders, C.
Paper Title Page
THP181 Low Intensity Nonlinear Effects in Compton Scattering Sources 2453
 
  • F. Albert, S.G. Anderson, C.P.J. Barty, M. Betts, R.R. Cross, C.A. Ebbers, D.J. Gibson, F.V. Hartemann, T.L. Houck, R.A. Marsh, M. J. Messerly, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California, USA
 
  The design and optimization of a Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering source are presented. A new precision source with up to 2.5 MeV photon energies, enabled by state of the art laser and x-band linac technologies, is currently being built at LLNL. Various aspects of the theoretical design, including dose and brightness optimization, will be presented. In particular, while it is known that nonlinear effects occur in such light sources when the laser normalized potential is close to unity, we show that these can appear at lower values of the potential. A three dimensional analytical model and numerical benchmarks have been developed to model the source characteristics, including nonlinear spectra. Since MEGa-ray sources are being developed for precision applications such as nuclear resonance fluorescence, assessing spectral broadening mechanisms is essential.
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
 
 
THP182 Overview of Current Progress on the LLNL Nuclear Photonics Facility and Mono-energetic Gamma-ray Source 2456
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, R.R. Cross, C.A. Ebbers, D.J. Gibson, T.L. Houck, R.A. Marsh, D.P. McNabb, M. J. Messerly, C. Siders
    LLNL, Livermore, California, USA
  • C. Adolphsen, T.S. Chu, E.N. Jongewaard, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks, F. Wang, J.W. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
A new class of gamma-ray light source based on Compton scattering is made possible by recent progress in accelerator physics and laser technology. Mono-energetic gamma-rays are produced from collisions between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linear accelerator designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable gamma-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to conduct nuclear resonance fluorescence experiments and address a broad range of current and emerging applications in nuclear photoscience. Users include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications.