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Abstract

The design and optimization of a Mono-Energetic

Gamma-Ray (MEGa-Ray) Compton scattering source are

presented. A new precision source with up to 2.5 MeV

photon energies, enabled by state of the art laser and x-band

linac technologies, is currently being built at LLNL. Vari-

ous aspects of the theoretical design, including dose and

brightness optimization, are presented. In particular, while

it is known that nonlinear effects occur in such light sources

when the laser normalized potential is close to unity, we

show that these can appear at lower values of the poten-

tial. A three dimensional analytical model and numeri-

cal benchmarks have been developed to model the source

characteristics, including nonlinear spectra. Since MEGa-

ray sources are being developed for precision applications

such as nuclear resonance fluorescence, assessing spectral

broadening mechanisms is essential.

INTRODUCTION

Nuclear Resonance Fluorescence (NRF) [1] is an isotope

specific process in which a nucleus, excited by gamma-

rays, radiates high energy photons at a specific energy.

This process has been well known for several decades, and

has potential high impact applications in homeland secu-

rity, nuclear waste assay, medical imaging and stockpile

surveillance, among other areas of interest. Although sev-

eral successful experiments have demonstrated NRF de-

tection with broadband bremsstrahlung gamma-ray sources

[2], NRF lines are more efficiently detected when excited

by narrowband gamma-ray sources. Indeed, the effective

width of these lines, ΔE/E, is on the order of 10−6. Cur-

rently, Compton scattering is the only physical process ca-

pable of producing a narrow bandwidth radiation (below

1%) at gamma-ray energies, with state-of-the art accelera-

tor and laser technologies. In Compton scattering sources,

a short laser pulse and a relativistic electron beam col-

lide to yield tunable, monochromatic, polarized gamma-ray

photons. Several projects have recently utilized Compton

scattering to conduct NRF experiments: Duke university

[3], Japan [4] and Lawrence Livermore National Labora-

tory (LLNL) [5, 6, 7]. In particular, LLNL’s Thomson-

Radiated Extreme X-rays (T-REX) project demonstrated
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isotope specific detection of low density materials behind

heavier elements [5].

This paper presents, within the context of NRF-based ap-

plications, the theoretical and conceptual design of a nar-

rowband monoenergetic gamma-ray (MEGa-ray) source.

In particular, weakly nonlinear effects are studied in the

picosecond regime.

COMPTON SCATTERING OVERVIEW

The Compton formula can be derived from energy-

momentum conservation, and expressed as follows:

uμ + �kμ = vμ + �qμ (1)

Here, uμ and vμ are the initial and scattered electron 4-

velocities, while kμ and qμ are the incident and scattered

4-wavenumbers, respectively. The 4-velocities are normal-

ized, with uμuμ = vμvμ = 1 , and the dispersion relation

implies that kμkμ = qμqμ = 0. Hence, using these con-

ditions allows for the elimination of the scattered electron

4-velocity, and results in:

uμ(kμ − qμ) = �kμqμ. (2)

Eq. 2 can be also written in a slightly different manner by

introducing the incident and scattered light-cone variables

[10], κ = uμkμ, and λ = uμqμ, respectively:

κ − λ = �kμqμ. (3)

Finally, in regular units and 3-vector form: uμ = (γ,u);

qμ = q(1,n), where n is the unit vector along the direction

of observation; and kμ = (k,k); this yields the well-known

Compton formula:

q
k
=

γ − u.(k/k)

γ − n.u + �(k − n.k)
(4)

Here k is the wave number and γ = 1/
√

1 − v2/c2 is the

electron relativistic factor. In other words:

q
k
=

γ − u cosϕ

γ − u cos θ + �k[1 − cos(θ + ϕ)]
, (5)

where ϕ is the angle between the incident laser and elec-

tron and θ is the angle between the incident electron and

scattered gamma-ray photon.
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For realistic laser-electron interactions, one has to take

into account the electron phase space and the laser trans-

verse dimensions. The exact nonlinear plane wave solu-

tion for the 4-velocity has been derived in earlier work

[11, 12, 13]:

uμ = u0
μ + Aμ − kμ

Aν(Aν + 2uν
0
)

2kνuν0
, (6)

where u0
μ is the initial 4-velocity and Aμ is the laser 4-

potential. By using the nonlinear 4-velocity in conjunction

with Eq. 2, one obtains:

(
u0
μ + Aμ − kμ

AνAν + 2u0
νA
ν

2u0
νkν

)
(kμ − qμ) = �kμqμ, (7)

which, after applying the Lorentz gauge condition kμAμ =
0, and the dispersion relation in vacuum, kμkμ = 0, simpli-

fies to:

u0
μk
μ −
(
u0
μ −

kμ
2u0
νkν

〈AνAν〉
)

qμ = �kμqμ. (8)

This new relation is a modified form of the Compton for-

mula, now including the nonlinear ponderomotive force of

the laser field. When referring to the geometry described in

Fig. 1, Eq. 8 becomes:

q
k
=

γ − u cos(ε + ϕ)

γ − u cos(θ + ε) + (1 − cos(ϕ + θ + ε))
[ 〈−AμAμ〉

2[γ−u cos(ϕ+ε)]
+ �k
] .
(9)
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Figure 1: Definition of the Compton scattering geometry in

the case of an electron beam.

Here the small angle ε is different for each electron and

represents the emittance of the electron beam. Note also

that 〈−AμAμ〉 is the nonlinear radiation pressure. By look-

ing at the variation of q as a function of all the parame-

ters in Eq. 9, for on-axis observation (θ = 0) one finds

that Δq/q ∝ Δk/k, Δq/q ∝ − 1
4
Δϕ2, Δq/q ∝ 2Δγ/γ,

Δq/q ∝ −γ2Δε2, and Δq/q ∝ − ΔA2

1+A2 .While the gamma ray

spectral width depends directly on the electron and laser

energy spreads, it is also strongly affected by the electron

beam emittance because of the γ2 factor. This provides a

quick overview of the various sources of spectral broaden-

ing in a Compton scattering light source. Note that the neg-

ative variations are asymmetric broadening toward lower

photon energies.

WEAKLY NONLINEAR EFFECTS

To accurately simulate realistic interactions between a

high brightness electron beam and a laser pulse, and study

their influence on high-precision Compton scattering light

sources, a fully 3D code is required. For long, narrow-

band laser pulses, a direct approach, accounting for fine

details in the correlated electron beam phase space, is com-

putationally intensive. Instead, one can take advantage

of the slow-varying pulse envelope, paraxial, and weakly

nonlinear approximations to develop a local plane-wave

model leading to analytical expressions for the electron 4-

trajectory. The corresponding three small parameters are:

Δφ−1 ,ε = (k0w0)−1 , and A0 , respectively. For large

Doppler upshifts, these conditions ensure that the particle

excursions from ballistic trajectories are very small com-

pared to all other scales characterizing the system. In turn,

this allows the use of a local plane wave model, where

all dynamical variables become functions of φ : the 6-

dimensional input phase space specifies a ballistic trajec-

tory for a given electron,xi
μ(φ) = x0i

μ + φ(u
0i
μ /κi) ; all other

dynamical quantities are evaluated along this 4-trajectory.

The three-dimensional electromagnetic fields are gen-

erated from the vector G, by taking A = ∇ × G , thus

ensuring a divergence-free potential vector satisfying the

Coulomb gauge. The electric field is given by E = −∂tA ,

while the magnetic induction is B = ∇×A . In the case of a

Gaussian pulse propagating paraxially along the positive z-

axis, focused cylindrically, and polarized along the x-axis,

the generating function is [14]:

Gy =
A0e−

φ2

Δφ2
− r2

1+z2 cos
[
−φ − z r2

1+z2 − atan(z)
]

k0

√
1 + z2

. (10)

Here, A0 is the amplitude of the vector potential; k0 =

ω0/c is the central wavenumber of the pulse. Space-time

coordinates are normalized as follows: r → r/w0, z →
z/z0, t → ct/z0, z0 =

1
2
k0w2

0 is the Rayleigh range, w0 is

the focal waist, φ = ω0t − k0z is the phase, and Δφ = ω0t
. Using both the slow-varying envelope and the paraxial

approximations, and systematically neglecting higher order

terms, the 4-potential is derived. Replacing all space-time

coordinates by their values along ballistic trajectories, the

local 4-velocity can be evaluated by keeping terms of order

A0, A0ε, ε, and A2
0; for example, the component parallel to

the polarization, is:

ux(φ) = ux0 + A0

exp
[
− φ2

Δφ2 − r(φ)2

1+z(φ)2

]
√

1 + z(φ)2
(11)
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×
[
1 + 4ε

ux0

γ0 − uz0

x(φ)z(φ)

1 + z(φ)2

]
sin[−φ − ψ(φ)],

where ψ = −z[r2/(1 + z2)] + atan(z).

Beyond this point, the flow of the 3D code, explained in

details in Ref. [13], can be summarized as follows. All

dynamical quantities are separated into slow-varying com-

ponents and periodic functions; integrals over the phase are

performed using the approximation:
∫

f pdφ 	 〈p〉 ∫ f dφ+
f
∫

(p− 〈p〉)dφ, where p(φ+ 2π) = p(φ), and where the av-

erage is defined as 〈p〉 = 1
2π

∫ π
−π pdφ . For harmonic func-

tions,
∫

(p − 〈p〉)dφ is analytical, while the integral over f
can be performed efficiently because it is a slow-varying

function. This approximation is used to evaluate the 4-

trajectory and the radiation integral. For situations domi-

nated by diffraction, the Fourier transform of the asymmet-

ric Lorentzian envelope yields complex nonlinear spectra.

Finally, for a 6N-dimensional distribution of input parti-

cles in phase space, as shown in Fig. 2, the radiation is

obtained by incoherent summation; linear (blue) and non-

linear (red) spectra are shown in Fig. 3. Full 3D trajec-

tories are used for all cases, the linear spectra are calcu-

lated from the ballistic phase
qμ
κ

(uμ
0
+ �kμ)φ only. Even for

A2
0 = 2.5 × 103 << 1, the difference between linear and

nonlinear spectra is clearly established, both for for an ide-

alized electron beam and for a realistic case.

Figure 2: PARMELA electron beam simulations: (A): γ
vs. radiofrequency (rf) phase, (B): beam focal spot, (C)

and (D): phase space.

CONCLUSION

In this Paper, the theoretical design of narrow-band

Compton scattering gamma-ray sources is presented within
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Figure 3: Linear (blue) and nonlinear (red) spectra from the

electron distribution of Fig. 2; the laser parameters are: 10

ps FWHM pulse duration, 532 nm wavelength, 12 μm rms

spot size, 150 mJ energy.

the specific context of nuclear resonance fluorescence ap-

plications. NRF is a very powerful isotope-specific pro-

cess that has potential high impact applications in home-

land security, nuclear waste assay and management, stock-

pile surveillance or medicine. In order for this process to be

fully efficient, it is necessary to operate in a spectrally nar-

row regime. In order to assess spectral broadening mecha-

nisms in Compton scattering, detailed theory modeling are

necessary. Nonlinear, three dimensional effects have to be

accounted for when designing high precision narrow-band

gamma-ray sources.
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