Author: Satogata, T.
Paper Title Page
THP061 Mimicking Bipolar Sextupole Power Supplies for Low-energy Operations at RHIC 2241
 
  • C. Montag, D. Bruno, A.K. Jain, G. Robert-Demolaize, T. Satogata, S. Tepikian
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.
 
 
THP081 Beam Lifetime and Limitations during Low-Energy RHIC Operation 2285
 
  • A.V. Fedotov, M. Bai, M. Blaskiewicz, W. Fischer, D. Kayran, C. Montag, T. Satogata, S. Tepikian, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States.
The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam γ=6.1 and γ=4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.
 
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.
 
 
MOP212 Quadrupole Beam-Based Alignment in the RHIC Interaction Regions 498
 
  • J.M. Ziegler
    BNL, Upton, Long Island, New York, USA
  • T. Satogata
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.
 
 
WEP048 Comparison of RF Cavity Transport Models for BBU Simulations 1582
 
  • I. Shin
    University of Connecticut, Storrs, Connecticut, USA
  • S. Ahmed, T. Satogata, B.C. Yunn
    JLAB, Newport News, Virginia, USA
 
  The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will cause BBU simulation results to be better matched with analytic calculations and experimental results.  
 
WEOBN1 Simultaneous Orbit, Tune, Coupling, and Chromaticity Feedback at RHIC 1394
 
  • M.G. Minty, A.J. Curcio, W.C. Dawson, C. Degen, R.L. Hulsart, Y. Luo, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, P. Oddo, V. Ptitsyn, G. Robert-Demolaize, T. Russo, V. Schoefer, C. Schultheiss, S. Tepikian, M. Wilinski
    BNL, Upton, Long Island, New York, USA
  • T. Satogata
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
All physics stores at the Relativistic Heavy Ion Collider are now established using simultaneous orbit, tune, coupling, and energy feedback during beam injection, acceleration to full beam energies, during the “beta-squeeze” for establishing small beam sizes at the interaction points, and during removal of separation bumps to establish collisions. In this report we describe the major changes made to enable these achievements. The proof-of-principle for additional chromaticity feedback will also be presented.
 
slides icon Slides WEOBN1 [8.054 MB]  
 
THP093 Design Status of MEIC at JLab 2306
 
  • Y. Zhang, S. Ahmed, S.A. Bogacz, P. Chevtsov, Y.S. Derbenev, A. Hutton, G.A. Krafft, R. Li, F. Marhauser, V.S. Morozov, F.C. Pilat, R.A. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M.G. Tiefenback, H. Wang, B.C. Yunn
    JLAB, Newport News, Virginia, USA
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • D.P. Barber
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • S.L. Manikonda, P.N. Ostroumov
    ANL, Argonne, USA
  • H. K. Sayed
    ODU, Norfolk, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
An electron-ion collider (MEIC) is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present MEIC design selects a ring-ring collider option and covers a CM energy range up to 51 GeV for both polarized light ions and un-polarized heavy ions, while higher CM energies could be reached by a future upgrade. The MEIC stored colliding ion beams, which will be generated, accumulated and accelerated in a green field ion complex, are designed to match the stored electron beam injected at full energy from the CEBAF in terms of emittance, bunch length, charge and repetition frequency. This design strategy ensures a high luminosity above 1034 s−1cm-2. A unique figure-8 shape collider ring is adopted for advantages of preserving ion polarization during acceleration and accommodation of a polarized deuteron beam for collisions. Our recent effort has been focused on completing this conceptual design as well as design optimization of major components. Significant progress has also been made in accelerator R&D including chromatic correction and dynamical aperture, beam-beam, high energy electron cooling and polarization tracking.
 
 
FROAN1 The European Spallation Source 2549
 
  • S. Peggs, H. Danared, M. Eshraqi, H. Hahn, A. Jansson, M. Lindroos, A. Ponton, K. Rathsman, G. Trahern
    ESS, Lund, Sweden
  • S. Bousson
    IPN, Orsay, France
  • R. Calaga
    BNL, Upton, Long Island, New York, USA
  • G. Devanz, R.D. Duperrier
    CEA/DSM/IRFU, France
  • J. Eguia
    Fundación TEKNIKER, Eibar (Gipuzkoa), Spain
  • S. Gammino
    INFN/LNS, Catania, Italy
  • S.P. Møller
    ISA, Aarhus, Denmark
  • C. Oyon
    SPRI, Bilbao, Spain
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • T. Satogata
    JLAB, Newport News, Virginia, USA
 
  The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.  
slides icon Slides FROAN1 [1.650 MB]