Paper | Title | Page |
---|---|---|
MOP155 | Progress on Diamond Amplified Photo Cathode | 382 |
|
||
Funding: Work supported by Brookhaven science Associates, LLC Contract No.DE-AC02-98CH10886 with the U.S.DOE Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. |
||
MOP157 | Testing a GAAS Cathode in SRF Gun | 388 |
|
||
Funding: Work supported by Brookhaven science Associates, LLC Contract No.DE-AC02-98CH10886 with the U.S.DOE RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode’s surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1⁄2 cell SRF gun, the vacuum can be maintained at nearly 10-12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. |
||
TUP147 | Rotating Dipole and Quadrupole Field for a Multiple Cathode System | 1106 |
|
||
A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. | ||
WEP161 | Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes | 1791 |
|
||
Funding: This work is supported by the U. S. Department of Energy under the DE-SC0004431 grant. Emission of electrons from a diamond-amplified cathode was recently demonstrated*. This experiment was based on a promising new concept** for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties. * X. Chang et al., Electron Beam Emission from a Diamond-Amplified Cathodes, to appear in Phys. Rev. Lett. (2010). ** I. Ben-Zvi et al., Secondary emission enhanced photoinjector, Rep. C-A/AP/149, BNL (2004). |
||
WEP162 | Modeling of Diamond Based Devices for Beam Diagnostics | 1794 |
|
||
Funding: The authors wish to acknowledge the support of the U.S. Department of Energy (DOE) under grants DE-SC0004584 (Tech-X Corp.) and DE-FG02-08ER41547 (BNL). Beamlines at new light sources, such as the National Synchrotron Light Source II will operate at flux levels beyond the saturation level of existing diagnostics, necessitating the development of new devices. Currently, there is no detector which can span the entire flux range that is possible even in a second generation light source and will become crucial for next generation light sources. One new approach* is a diamond-based detector that will be able to monitor beam position, flux and timing to much better resolution. Furthermore, this detector also has linear response to flux over 11 orders of magnitude. However, the successful development of the detector requires thorough understanding and optimization of the physical processes involved. We will discuss the new modeling capabilities we have been implementing in the VORPAL 3D code to investigate the effects of charge generation due to absorption of x-ray photons, transport, and charge trapping. We will report results from VORPAL simulations on charge collection and how it depends on applied field, charge trapping, and the energy of absorbed photons. *J. W. Keister, J. Smedley, D. A. Dimitrov, and R. Busby, Charge Collection and Propagation in Diamond X-ray Detectors, IEEE Transactions on Nuclear Science, 57, 2400 (2010). |
||
WEP263 | A Multiple Cathode Gun Design for the eRHIC Polarized Electron Source | 1969 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The future electron-ion collider eRHIC requires a high average current (~50 mA), short bunch (~3 mm), low emittance (~20 μm) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode [1]. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique. |
||
WEP284 | Performance Study of K2CsSb Photocathode inside a DC High Voltage Gun | 2017 |
|
||
Funding: The authors wish to acknowledge the support of the U.S. Department of Energy (DOE) under grant DE-FG02-08ER41547. In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K2CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the GaAs:Cs in RF injector and the K2CsSb cathode in the DC gun in order to widen our choices. Since the multialkali cathode is a compound with uniform stochiometry over its entire thickness, we anticipate that the life time issues seen in GaAs:Cs due surface damage by ion bombardment would be minimized with this material. Hence successful operation of the K2CsSb cathode in DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of K2CsSb cathode in a DC gun, we have designed and built a load lock system that would allow the fabrication of the cathode at BNL and its testing at JLab. In this paper, we will present the design of the load-lock system, cathode fabrication, and the cathode performance in the preparation chamber and in the DC gun. |
||
TUOAN2 | High Luminosity Electron-Hadron Collider eRHIC | 693 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented. |
||
![]() |
Slides TUOAN2 [4.244 MB] | |