Author: Pozdeyev, E.
Paper Title Page
TUP091 Electromagnetic Design of a Multi-harmonic Buncher for the FRIB Driver Linac 1000
 
  • J.P. Holzbauer, W. Hartung, F. Marti, Q. Zhao
    NSCL, East Lansing, Michigan, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy under Grant Number DE-FGO2-08ER41553.
The driver linac for the Facility for Rare Isotope Beams (FRIB) at MSU will produce primary beams of ions at ≥200 MeV/u for nuclear physics research. A dc ion beam from an ECR ion source will be pre-bunched upstream of the radio frequency quadrupole linac. A multi-harmonic buncher (MHB) was designed for this purpose, using experience gained with a similar buncher for the ReA3 re-accelerator linac, which is presently being commissioned at MSU. The FRIB MHB resonator operates with three frequencies (40.25 MHz, 80.5 MHz, and 120.75 MHz) to produce an approximately linear sawtooth in the voltage as a function of time. The three resonant frequencies are produced via two quarter-wave resonators with a common gridless gap: one resonator is driven at its fundamental mode at 40.25 MHz and its first higher-order mode (120.75 MHz), while the other is driven only at its fundamental mode of 80.5 MHz. The electromagnetic design of the MHB resonator will be presented, including the electrode design and tuning mechanisms.
 
 
FROBN2 Technical Challenges in Design and Construction of FRIB 2561
 
  • R.C. York, G. Machicoane
    NSCL, East Lansing, Michigan, USA
  • S. Assadi, G. Bollen, T . Glasmacher, W. Hartung, M.J. Johnson, F. Marti, E. Pozdeyev, M.J. Syphers, E. Tanke, J. Wei, X. Wu, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by DOE CA DE-SC0000661 and Michigan State University.
The Facility for Rare Isotope Beams (FRIB) will be a world-leading, DOE national users facility for the study of nuclear structure, reactions and astrophysics on the campus of Michigan State University. A superconducting, heavy-ion, driver linac will be used to provide stable beams of >200 MeV/u at beam powers up to 400 kW (~650 electrical micro-amps for uranium) that will be used to produce rare isotopes by in flight fragment separation. The selected rare isotopes will be used at velocity (~0.5 c), stopped, or reaccelerated. FRIB is a challenging technical project. An overview of the project, project challenges, and mitigating strategies will be presented.
 
slides icon Slides FROBN2 [14.690 MB]  
 
TUOAN2 High Luminosity Electron-Hadron Collider eRHIC 693
 
  • V. Ptitsyn, E.C. Aschenauer, M. Bai, J. Beebe-Wang, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, P. He, W.A. Jackson, A.K. Jain, E.C. Johnson, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, M.G. Minty, B. Parker, A.I. Pikin, T. Rao, T. Roser, B. Sheehy, J. Skaritka, S. Tepikian, R. Than, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, Q. Wu, W. Xu, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
  • E. Tsentalovich
    MIT, Middleton, Massachusetts, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented.
 
slides icon Slides TUOAN2 [4.244 MB]