Author: Posen, S.
Paper Title Page
TUP063 HOM Measurements with Beam at the Cornell Injector Cryomodule 934
 
  • S. Posen, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF
The Cornell ERL injector prototype is undergoing commissioning and testing for running unprecedented currents in an electron cw injector. This paper discusses preliminary measurements of HOMs in the injector prototype’s superconducting RF cryomodule. These include HOM spectra up to 30 GHz measured via small antennae located at the HOM beam line absorbers between the SRF cavities. The spectra are compared at different beam currents and repetition rates. The shape of the spectra are compared to ABCI simulations of the loss factor spectrum of the cryomodule beam line. The total HOM power dissipated in the HOM loads was also measured with beam on, which allowed for an estimate of the loss factor. This measurement was accomplished via temperature sensors on the loads, calibrated to input power by heaters on the loads.
 
 
FROBS3 Progress on Superconducting RF for the Cornell Energy-Recovery-Linac 2580
 
  • M. Liepe, G.H. Hoffstaetter, S. Posen, J. Sears, V.D. Shemelin, M. Tigner, N.R.A. Valles, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cornell University is developing the superconducting RF technology required for the construction of a 5 GeV, 100 mA light source driven by an energy-recovery linac. Currently, a 100 mA injector cryomodule is under extensive testing and prototypes of the components of the SRF main linac cryomodule are under development, fabrication and testing. In this paper we give an overview of these recent activities at Cornell.  
slides icon Slides FROBS3 [10.577 MB]  
 
TUOBS2 Cornell ERL Research and Development 729
 
  • C.E. Mayes, I.V. Bazarov, S.A. Belomestnykh, D.H. Bilderback, M.G. Billing, J.D. Brock, E.P. Chojnacki, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, E. Fontes, C.M. Gulliford, D.L. Hartill, G.H. Hoffstaetter, V.O. Kostroun, F.A. Laham, Y. Li, M. Liepe, X. Liu, F. Löhl, A. Meseck, A.A. Mikhailichenko, H. Padamsee, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, V.D. Shemelin, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, Y. Xie
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731.
Energy Recovery Linacs (ERLs) are proposed as drivers for hard X-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. The advantages of ERL lightsources will be explained, and the status of plans for such facilities will be described. In particular, Cornell University plans to build an ERL light source, and the preparatory research for its construction will be discussed. This will include the prototype injector for high current CW ultra-low emittance beams, superconducting CW technology, the transport of low emittance beams, halo formation from intrabeam scattering, the mitigation of ion effects, the suppression of instabilities, and front to end simulations. Several of these topics could become important for other modern light source projects, such as SASE FELs, HGHG FELs, and XFELOs.
 
slides icon Slides TUOBS2 [5.632 MB]