Author: Pinayev, I.
Paper Title Page
MOP198 BPM Inputs to Physics Applications at NSLS-II 465
 
  • Y. Hu, L.R. Dalesio, J.H. DeLong, K. Ha, J. Mead, I. Pinayev, G. Shen, O. Singh, Y. Tian, K. Vetter, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  A new BPM (Beam Position Monitor) electronics is under development and in good progress at NSLS-II. This in-house BPM receiver with many new features is comparable to commercial solution. BPM data for fast orbit feedback (FOFB) is one of the most important physics applications. The procedure to use BPM for FOFB is introduced firstly. Then, different BPM data flows associated with different physics requirements and applications are discussed. And control implementation of BPM system for physics applications is presented.  
 
MOP205 NSLS-II Injection Straight Diagnostics 477
 
  • I. Pinayev, A. Blednykh, M.J. Ferreira, R.P. Fliller, B.N. Kosciuk, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In the paper we present the diagnostics installed on the injection straight. Its usage for commissioning and tuning of the injection cycle is also described.  
 
MOP211 NSLS-II RF Beam Position Monitor 495
 
  • K. Vetter, J.H. DeLong, A.J. Della Penna, K.M. Ha, Y. Hu, B.N. Kosciuk, J. Mead, I. Pinayev, O. Singh, Y. Tian
    BNL, Upton, Long Island, New York, USA
  • G.J. Portmann
    LBNL, Berkeley, California, USA
  • J.J. Sebek
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. DOE under contract No. DE-AC02-98CH10886.
An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPMs in ±0.1C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS.
 
 
TUP211 Compensation of Fast Kicker Rolls with Skew Quadrupoles 1208
 
  • I. Pinayev
    BNL, Upton, Long Island, New York, USA
 
  The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump.  
 
THP215 Performance of the Diagnostics for NSLS-II Linac Commissioning 2525
 
  • R.P. Fliller, R. Heese, H.-C. Hseuh, M.P. Johanson, B.N. Kosciuk, D. Padrazo, I. Pinayev, J. Rose, T.V. Shaftan, O. Singh, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster synchrotron and associated transfer lines. The transfer lines not only provide a means to delivering the beam from one machine to another, they also provide a suite of diagnostics and utilities to measure the properties of the beam to be delivered. In this paper we discuss the suite of diagnostics that will be used to commission the NSLS-II linac and measure the beam properties. The linac to booster transfer line can measure the linac emittance with a three screens measurement or a quadrupole scan. Energy and energy spread are measured in a dispersive section. Total charge and charge uniformity are measured with wall current monitors in the linac and transformers in the transfer line. We show that the performance of the transfer line will be sufficient to ensure the linac meets its specifications and provides a means of trouble shooting and studying the linac in future operation.
 
 
WEP201 Status of NSLS-II Booster 1864
 
  • S.M. Gurov, A. Akimov, O. Anchugov, A.M. Batrakov, E.A. Bekhtenev, O.V. Belikov, P.B. Cheblakov, V.P. Cherepanov, A.D. Chernyakin, V.G. Cheskidov, I.N. Churkin, A.N. Dubrovin, A. Erokhin, K. Gorchakov, S.E. Karnaev, G.V. Karpov, V.A. Kiselev, V.V. Kobets, V.V. Kolmogorov, V.M. Konstantinov, A.A. Korepanov, E.A. Kuper, V. Kuzminykh, E.B. Levichev, V.R. Mamkin, A.S. Medvedko, O.I. Meshkov, N. Nefedov, V.V. Neyfeld, I.N. Okunev, M. Petrichenkov, V.V. Petrov, A. Polyansky, D.N. Pureskin, A. Rakhimov, S.I. Ruvinsky, T.V. Rybitskaya, L.M. Schegolev, A.V. Semenov, D.V. Senkov, S.S. Serednyakov, S.V. Shiyankov, D.A. Shvedov, S.V. Sinyatkin, V.V. Smaluk, A.V. Sukhanov, L. Tsukanova, A.V. Utkin, K. Yaminov
    BINP SB RAS, Novosibirsk, Russia
  • J.H. DeLong, R.P. Fliller, G. Ganetis, H.-C. Hseuh, I. Pinayev, T.V. Shaftan, S.K. Sharma, O. Singh, Y. Tian, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • P.A.E. Elkiaer
    Danfysik A/S, Jyllinge, Denmark
 
  The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster and the main designed parameters.  
 
THP216 Progress with NSLS-II Injection Straight Section Design 2528
 
  • T.V. Shaftan, A. Blednykh, W.R. Casey, L.R. Dalesio, R. Faussete, M.J. Ferreira, R.P. Fliller, G. Ganetis, R. Heese, H.-C. Hseuh, P.K. Job, E.D. Johnson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, D. Padrazo, B. Parker, I. Pinayev, S.K. Sharma, O. Singh, C.J. Spataro, G.M. Wang, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by U.S. DOE, Contract No.DE-AC02-98CH10886
NSLS-II injection straight section consists of the pulsed and DC/Slow bumps, septa system, beam trajectory correction and diagnostics systems. In this paper we discuss overall injection straight layout, preliminary element designs, specifications for the pulsed and DC magnets and their power supplies, vacuum devices and chambers and diagnostics devices.