Author: Nuhn, H.-D.
Paper Title Page
MOP273 Calibration and Simulation of the LCLS Undulator Beam Loss Monitors using APS Accelerators 618
 
  • J.C. Dooling, W. Berg, A.R. Brill, L. Erwin, B.X. Yang
    ANL, Argonne, USA
  • A.S. Fisher, H.-D. Nuhn, M. Santana-Leitner
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357
Electrons scattered by alumina ceramic transverse beam profile monitors inserted in the Advanced Photon Source (APS) booster-to-storage ring (BTS) transfer line are used to generate C ̆erenkov light for calibration of beam loss monitors (BLMs) installed in the Linac Coherent Light Source (LCLS) undulator beamline. In addition, gas bremsstrahlung (GB) photons generated by 7-GeV electrons in the APS sector 35 storage ring straight section are used to create pair-production electrons for measurement and calibration purposes. Both cases are modeled with the particle-matter interaction program MARS. The realized tuning fork geometry of the BLM exhibits regions of greater sensitivity in the radiator. Transverse GB beam scans have provided uniformity and sensitivity data throughout the volume of the radiator. Comparisons between predicted and measured signal strengths and thermoluminescent dosimeter readings are given and shown to be in reasonable agreement.
 
 
THP168 FEL Beam Stability in the LCLS* 2423
 
  • J.L. Turner, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, Y. Feng, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, K. Horovitz, Z. Huang, R.H. Iverson, D. Kharakh, A. Krasnykh, J. Krzywinski, H. Loos, M. Messerschmidt, S.P. Moeller, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: *This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
During commissioning and operation of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center electron and x-ray beam size, shape, centroid motion have been studied. The studies, sources, and remediation are summarized in this paper.
 
 
THP184 Tuning of the LCLS Linac for User Operation 2462
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, Z. Huang, R.H. Iverson, N. Lipkowitz, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, T.J. Smith, J.L. Turner, J.J. Welch, W.E. White, J. Wu, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515.
With the Linac Coherent Light Source (LCLS) now in its third user run, reliable electron beam delivery at various beam energies and charge levels has become of high operational importance. In order to reduce the beam tuning time required for such changes, several diagnostics and feed-forward procedures have been implemented. We report on improved lattice diagnostics to detect magnet, model, and diagnostics errors as well as on measurements of transverse RF kicks and static field contributions and corresponding correction procedures to facilitate beam energy changes.