Author: Musumeci, P.
Paper Title Page
MOOBN2 Inverse Free Electron Laser Accelerators for Driving Compact Light Sources and Detection Applications 1
 
  • A.M. Tremaine, S. Boucher, A.Y. Murokh
    RadiaBeam, Santa Monica, USA
  • S.G. Anderson
    LLNL, Livermore, California, USA
  • W.J. Brown
    MIT, Cambridge, Massachusetts, USA
  • J.P. Duris, P. Musumeci, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • I. Jovanovic
    Penn State University, University Park, Pennsylvania, USA
  • I. Pogorelsky, M.N. Polyanskiy, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Defense Threat Reduction Agency (DTRA)
Because of the broad application space for compact, 1-2 GeV accelerators, Inverse Free Electron Lasers (IFELs) are enjoying a rebirth of R&D funding. The efforts are under way in industry (RadiaBeam), academia (UCLA), and national laboratories (LLNL and BNL) to develop an ultra-compact IFEL energy booster for the photoinjector driven linear accelerating systems. The RUBICON collaboration integrates many of the institutions for proof-of-principle IFEL driven Inverse Compton Scattering (ICS) compact light source demonstrations. IFELs perform optimally in this mid-energy range, and given continual advances in laser technology, high average power IFELs with gradients well over 500 MeV/m are now feasible, leading to high quality, compact ICS and Free Electron Laser light sources. Importantly, IFEL operation can have excellent shot-to-shot energy stability, which is crucial when not only driving these light sources, but also for the downstream applications such as photofission, nuclear resonance fluorescence and standoff detection.
 
slides icon Slides MOOBN2 [2.625 MB]  
 
MOP102 High-Gradient High-Energy-Gain Inverse Free Electron Laser Experiment using a Helical Undulator 289
 
  • J.P. Duris, R.K. Li, P. Musumeci, E.W. Threlkeld, M.T. Westfall
    UCLA, Los Angeles, California, USA
 
  Funding: UC Lab fee award 09-LR-04-117055-MUSP DOE-HEP grant DE-FG02-92ER40693 Defense Threat Reduction Agency, Basic Research Award # HDTRA1-10-1-0073
Preparations for a high energy gain inverse free electron laser (IFEL) experiment using an undulator and Brookhaven National Lab’s (BNL) Accelerator Test Facility’s (ATF) terawatt CO2 laser are underway. 3D simulations suggest that the experiment will likely accelerate a 50 MeV beam to 117 MeV in 54 cm while maintaining a low energy spread. The helical undulator is currently under construction at UCLA’s Particle Beam Physics Laboratory.
 
 
MOP127 The LLNL/UCLA High Gradient Inverse Free Electron Laser Accelerator 331
 
  • S.G. Anderson, G.G. Anderson, M. Betts, S.E. Fisher, D.J. Gibson, S.S.Q. Wu
    LLNL, Livermore, California, USA
  • J.T. Moody, P. Musumeci, A.M. Tremaine
    UCLA, Los Angeles, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
We describe the Inverse Free Electron Laser (IFEL) accelerator currently under construction at LLNL in collaboration with UCLA. This project combines a strongly tapered undulator with a 10 Hz repetition rate, Ti:Sapphire laser to produce > 200 MeV/m average accelerating gradient over the 50 cm long undulator. The project goal is to demonstrate IFEL accelerator technology that preserves the input beam quality and is well suited for future light source applications. We discuss the accelerator design focusing on issues associated with the use of 800 nm, 100 fs laser pulses. Three-dimensional simulations of the IFEL interaction are presented which guide the choice of laser and electron beam parameters. Finally, experimental plans and potential future developments are discussed.
 
 
MOP287 Femtosecond RF Timing in Low Charge Photoinjectors 654
 
  • C.M. Scoby, R.K. Li, J.T. Moody, P. Musumeci
    UCLA, Los Angeles, California, USA
 
  Funding: Office of Naval Research Grant No. N000140711174 and US Department of Energy Grant No. DE-FG02-92ER40693.
Photoelectron gun rf parameter mapping is explored as an extension to electro-optic sampling to monitor bunch vs. laser relative time-of-arrival. The method is evaluated for timestamping sub-picocoulomb femtosecond laser-pumped dynamics in graphite via electron diffraction where the required timing resolution is < 10 fs.
*AL Cavalieri, et al. Phys. Rev. Lett. 94, 114801 (2005)
**A Azima, et al. Appl. Phys. Lett. 94, 144102 (2009)
***CM Scoby, et al. PRST-AB 13, 022801 (2010)
****KJ Kim, Rev. Nucl. Inst. Meth. A 275, 2 (1989)
 
 
WEP189 Compression and Synchronization of an Ultra-short Electron Beam Using a THz Undulator Interaction 1843
 
  • J.T. Moody, R.K. Li, P. Musumeci, C.M. Scoby, H.L. To
    UCLA, Los Angeles, California, USA
 
  Funding: DOE-BES No. DE-FG02-92ER40693 and DOE-BES No. DE-FG02-07ER46272
Injection of electron beams into laser driven picosecond scale accelerating structures demand highly synchronized electron beams with bunch lengths approaching the femtosecond scale. One-dimensional numerical studies of undulator interactions of 3.5 MeV sub-picosecond electron beams and THz pulse trains produced by optical rectification have shown substantial compression and a reduction in time of arrival jitter with respect to the accelerator drive laser from the scale of hundreds of fs to that of tens of fs. In this paper a THz undulator based compression and synchronization scheme is investigated.
 
 
WEP289 The Impact of Laser Polarization in Multiphoton Photoemission from a Copper Cathode 2026
 
  • R.K. Li, J.T. Moody, P. Musumeci, C.M. Scoby, H.L. To, M.T. Westfall
    UCLA, Los Angeles, California, USA
 
  Multiphoton photoemission from a copper cathode has been recently demonstrated to be a simple and efficient method to generate high quality electron beams. To further improve this scheme to achieve higher charge yielding efficiency and lower intrinsic emittance, we explored the effects of laser polarization at oblique incidence. Charge yields of s and p polarization from coated and uncoated cathodes were measured. The vectorial photoelectric effect was observed on the uncoated cathode but much less evident on the coated one, suggesting that surface properties are critical to the vectorial effect and in general important in photoemission. The results not only are useful in the optimization of an rf photoinjector, but also allow deeper understanding of the photoemission physics.
* P. Musumeci et al., Phys. Rev. Lett. ZeHn4, 084801 (2010).
** P. Musumeci et al., Phys. Rev. Lett. ZeHn0, 244801 (2008).
 
 
TUODS4
Free Electron Laser Seeding Experiments at SPARC  
 
  • L. Giannessi, F. Ciocci, G. Dattoli, M. Del Franco, A. Petralia, M. Quattromini, C. Ronsivalle, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • D. Alesini, M. Bellaveglia, M. Castellano, E. Chiadroni, G. Di Pirro, M. Ferrario, D. Filippetto, A. Gallo, G. Gatti, A. Ghigo, E. Pace, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • M. Bougeard, B. Carré, D. Garzella
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
  • F. Briquez, M.-E. Couprie, M. Labat
    SOLEIL, Gif-sur-Yvette, France
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • F. Frassetto, L. P. Poletto
    LUXOR, Padova, Italy
  • G. Lambert
    LOA, Palaiseau, France
  • G. Marcus, P. Musumeci, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • M. Moreno, M. Serluca
    INFN-Roma, Roma, Italy
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • J.V. Rau, V. Rossi Albertini
    ISM-CNR, Rome, Italy
  • E. Sabia
    ENEA Portici, Portici (Napoli), Italy
  • S. Spampinati
    ELETTRA, Basovizza, Italy
 
  We report on the recent activity at SPARC, which has successfully been operated in seeded mode. In the framework of the DS4 EUROFEL collaboration, a research work plan aiming at the investigation of seeded and cascaded FEL configurations was implemented. The main goal of the collaboration was to study the amplification and the harmonic generation process of an input seed signal. We describe here the first experimental results, with the observation of harmonics up to the 11th of the fundamental and the operation of the FEL in cascaded mode, driven both by seed generated in crystal and in gas (Ar).  
slides icon Slides TUODS4 [8.947 MB]