Author: Moog, E.R.
Paper Title Page
TUOCS2 Accelerator Aspects of the Advance Photon Source Upgrade 766
 
  • L. Emery, M. Borland, G. Decker, K.C. Harkay, E.R. Moog, R. Nassiri
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is a third-generation storage-ring-based x-ray source that has been operating for more than 13 years and is enjoying a long period of stable, reliable operation. While APS is presently providing state-of-the-art performance to its large user community, we must plan for improvements and upgrades to stay at the forefront scientifically. Significant improvements should be possible through upgrades of beamline optics, detectors, and end-station equipment. In this paper, we discuss the evolutionary changes that are envisioned for the storage ring itself. These include short-pulse x-rays, long straight sections, superconducting undulators, improved beam stability, and higher current. With these and other changes, we anticipate significant improvements in capacity, flux, and brightness, along with the ability to perform unique time-resolved experiments.
 
slides icon Slides TUOCS2 [0.932 MB]  
 
TUP240 Coil Energizing Patterns for an Electromagnetic Variably Polarizing Undulator 1277
 
  • R.J. Dejus, M.S. Jaski, E.R. Moog
    ANL, Argonne, USA
  • S. Sasaki
    HSRC, Higashi-Hiroshima, Japan
 
  Funding: The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
A new electromagnetic insertion device optimized for producing intense soft x-rays of variable polarization is under construction at the Advanced Photon Source. Most of the coil packs are powered by a main power supply; a few are powered separately so that magnetic fields at certain pole positions can be different. The undulator radiation depends sensitively on the chosen magnetic field pattern, and higher spectral harmonics may be shifted in energy. For some beamline experiments, it is important to reduce the so-called higher-order contamination to increase the signal-to-noise ratio. We present spectra and power densities calculated directly from realistic magnetic fields and discuss coil energizing patterns.
Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
 
 
TUP242 Electron Cloud Issues for the APS Superconducting Undulator 1283
 
  • K.C. Harkay, Y. Ivanyushenkov, R. Kustom, E.R. Moog, E. Trakhtenberg
    ANL, Argonne, USA
  • L.E. Boon, A.F. Garfinkel
    Purdue University, West Lafayette, Indiana, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The APS Upgrade calls for the development and commissioning of a superconducting undulator (SCU) at the Advanced Photon Source (APS), a 7-GeV electron synchrotron. Operation of an SCU at Angstromquelle Karlsruhe (ANKA), also an electron ring, suggests that electron multipacting is consistent with the observed heat load and pressure rise, but this effect is not predicted by an electron cloud generation code. At APS it was found that while the cloud code POSINST agreed fairly well with retarding field analyzer (RFA) data for a positron beam (operated 1996-98), the agreement was less satisfactory for the electron beam. The APS data suggest that the photoelectron model is not complete. Given that the heat load is a critical parameter in designing the cryosystem for the SCU and given the experience at ANKA, a study is underway to minimize the possible contribution to the heat load by the electron cloud at the APS, the photoelectrons in particular. In this talk, the results from POSINST are presented. Preliminary tracking of the photon flux using SYNRAD3D for the APS SCU chamber is presented, and possible ways to mitigate the photoelectrons are discussed.
 
 
TUP244 Magnetic Simulation of an Electromagnetic Variably Polarizing Undulator * 1289
 
  • M.S. Jaski, R.J. Dejus, E.R. Moog
    ANL, Argonne, USA
 
  Development of an all-electromagnetic variable polarizing undulator is underway at the Advanced Photon Source (APS). This device has a set of Bx poles and coils and a set of By poles and coils. The Bx coils are powered separately from the By coils. Modifying the geometry of the Bx coils or poles changes not only the Bx field but changes the By field as well and vice-versa. Magnetic modeling with OPERA 3-D software was used to optimize the coil and pole geometries. Results of the magnetic field simulation and optimization are presented in this paper.
* Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357.
 
 
TUP245 Comparison of Standard S-Glass and Ceramic Coating as Insulation in Short-Period Superconducting Undulators Based on Nb3Sn 1292
 
  • S.H. Kim, C.L. Doose, M. Kasa, R. Kustom, E.R. Moog
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
This paper compares calculated on-axis fields for short- period superconducting undulators (SCUs) using Nb3Sn superconductor with two different insulation thicknesses, 0.02 mm and 0.05 mm. When the insulated conductor diameter remained the same, the on-axis fields using the thinner insulation were higher by about 8 – 15% for a period range of 15 – 10 mm. When the conductor diameters with the thicker insulation were made larger than the conductors with the thinner insulation, the differences were reduced to be about 6 – 12%.
 
 
THOBS1 Developments in Superconducting Insertion Devices 2077
 
  • E.R. Moog, Y. Ivanyushenkov
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A number of superconducting wigglers are installed and in operation worldwide. Superconducting undulators, with their shorter periods and more demanding field quality requirements, present additional challenges and are still under development. Superconducting technology can produce a higher magnetic field strength on the beam axis than can a permanent-magnet-based undulator. This makes shorter period undulators feasible – they will still reach high enough field to have a reasonable photon energy tuning range. The shorter period device gives higher photon brightness at higher photon energies, opening up new opportunities for photon-hungry applications that require higher photon energies. Many light sources are interested in having a superconducting undulator; a few, including the Advanced Photon Source, have ongoing projects and are making significant progress. The status of these projects will be discussed.
 
slides icon Slides THOBS1 [3.427 MB]