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Abstract 
The Advanced Photon Source (APS) Upgrade calls for 
the design and development of a superconducting 
undulator (SCU) at APS, a 7-GeV electron synchrotron. 
The heat load is a critical parameter in designing the 
cryosystem for the SCU. Operation of an SCU at ANKA 
shows a heat load and pressure rise that may be consistent 
with beam-induced multipacting from an electron cloud. 
For this reason, a study was undertaken to minimize the 
contribution to the heat load by a possible electron cloud 
at the APS. We focused on analyzing the photon 
absorption on the chamber walls that can potentially give 
rise to photoelectrons. Preliminary tracking of the photon 
flux using the code synrad3d for the APS SCU chamber is 
presented, and possible ways to mitigate the photo-
electrons are discussed. 

INTRODUCTION 
A key goal for the APS Upgrade is to provide high 

photon brilliance at high photon energies. Superconduct-
ing undulator (SCU) technology can potentially outper-
form permanent-magnet technology in terms of the peak 
magnetic field at small period length. An important 
challenge in designing an SCU system is to minimize the 
heat load for the cryosystem. Preliminary estimates of the 
total beam-related heat load were presented elsewhere [1]. 
Included in the total was an estimate of electron cloud 
heating of 2 W, caused by electrons being accelerated into 
the walls by the beam field, resulting in secondary 
emission of more electrons. The electron-cloud generation 
code posinst [2] was used for these calculations. 

There is growing evidence suggesting that the existing 
electron-cloud generation models are incomplete for 
electron beams [3-5]. For these reasons, we investigated 
the possible contribution to the beam-induced heat load 
by the photo-emitted electrons. A key step in this analysis 
is a calculation of photon absorption in the SCU chamber.  

We used the synrad3d code [6] to track synchrotron 
radiation in 3D for both primary and secondary photons 
that scatter on the chamber walls before being absorbed. 
Through a combination of simulation parameters and 
post-processing, a strategy was developed to potentially 
minimize the absorbed photon power and, subsequently, 
photoelectron generation. 

SYNRAD3D 
Synrad3d is a photon production and propagation code 

that utilizes the Better Methodical Accelerator Design 
(BMAD) and radiation integrals to determine initial 
positions and momenta of each marco-photon [6].  For 
this analysis up to 300k macro-photons were generated 
and comparisons of their absorbed positions were made 
with and without reflections allowed.   

The chamber wall is a simplified model of one sector of 
the APS ring. This simplification assumed no ante-
chamber in the main vacuum chamber. The antechamber 
for the standard insertion device (ID) was modelled as an 
extension of the beam chamber. By ignoring the ante-
chamber we were able to avoid extended convex chamber 
shapes. The issues associated with convex or arbitrary 
chamber shapes are addressed in the next section. The top 
and side views of the chamber are shown in Figs. 1 and 2. 
The SCU chamber cross-section is shown in Fig. 3. 

In Synrad3d all photon reflections are specular and 
elastic. The reflection probability is based on data from 
the Berkeley Center for X-ray Optics [6]. 

For this analysis we are only concerned with photons 
absorbed in the SCU cryostat. All photons without 
enough energy to produce photoelectrons are ignored, so 
an energy cut of 4 eV was used, a value representing the 
chamber work function. 

Validation of Arbitrary Wall 
Synrad3d uses each photon’s momentum vector to 

determine its position a distance Δs downstream. If the 
photon is outside the chamber wall then synrad3d 
calculates the point at which it exited the chamber and 
whether it was absorbed or reflected. In the case of a 
convex arbitrary chamber wall shape, such as the photon 
absorbers marked A, B in Fig. 1, photons can potentially 
pass through undetected. To confirm that no photons were 
behaving in this way the chamber wall file was validated 
by artificially lengthening A and B and changing the 
distance between photon position checks to Δs = 0.01 m. 
In the chamber analyzed the absorbers are modelled as 
5-cm long instead of the actual ~0.5 cm. This change did 
not affect the validity of the final results because all 
photons that would be reflected are preserved, but the 
probability that a photon would pass through the chamber 
wall is decreased. In addition to lengthening the 
absorbers, the distance between photon checks was set to 
1 cm, a length shorter than the modeled absorber.  It was 
found that the small Δs resulted in the same photon 
absorption locations as the larger, default Δs = 3 m.  
Values of Δs of 0.1 m and 1 m were also checked 
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Fig. 6. Energy of absorbed photons vs. s, integrated over 
perimeter, secondary photons included. The taper is 
modeled as an anti-reflecting surface. 

Fig 7. Energy of absorbed photons vs. chamber perimeter, 
integrated over s, secondary photons included. The taper 
is modeled as an anti-reflecting surface. 

Analysis 
The power absorbed in the SCU chamber including the 

primary photons only is estimated using the power 
distribution for a bending magnet: ௗమ௉ௗఏௗట ൌ 1.44 ൈ 10ିଵ଼ߛହܨሺ߰ߛሻ [W/mrad2-mA]. 

The total power generated by each bending magnet into 
the full 78.5 mrad arc is 6.8 kW [8]. The fraction that 
passes absorber A is 2.26/78.5, or 200 W. For the vertical 
fan the power that remains outside an envelope covering 
the length of the SCU chamber, corresponding to the 
angles (ψ1 – ψ2), where ψ2 = 4.34/γ, is computed by 
integrating F(γψ) [9]. The fractional power absorbed on 
the SCU chamber walls becomes 0.24%(200W) = 0.5 W. 

The absorbed power including secondary photons has 
not yet been computed. It should be noted that about half 
the absorbed photons have very low energy and will 
contribute little to the total absorbed power. 

The photoelectrons generated in the SCU chamber can 
potentially be accelerated by the beam and produce an 
additional heat source. Photons arriving at the walls at the 
same time as the electron bunch generate photoelectrons, 
but these are immediately driven back into the wall by the 
bunch field. Photons scattering in the x-plane travel an 
extra path length of ~53 mm, or 180 ps. The extra path 
length may be much shorter since the photons intercept 
the walls at almost grazing incidence. For an incident 
angle of 5 deg, the path length is 600 mm along s and 602 

mm across the chamber, a difference of 2 mm, or 7 ps. 
The bunch length ranges between 20 ps and 40 ps and the 
bunch spacing between 2.8 ns and 153 ns. The path length 
difference for photons undergoing multiple scattering 
could be longer than the bunch length. Any 
photoelectrons that are produced can then potentially drift 
near the beam between bunch passages, and get a high-
energy kick into the walls by the beam. Of course, 
photoelectrons cannot cross the SCU magnet field, which 
occupies 330 or 1150 m at the center of the SCU 
chamber. 

FUTURE WORK 
The results presented are very preliminary and more 

work is planned with a focus on reducing the absorbed 
secondary photons in the SCU chamber. Some initial 
plans include modeling absorber A with an anti-reflecting 
surface and adding a mask behind absorber A to intercept 
photons off the x-plane. Also in the future, the effect of 
beam missteering will be added. Calculation of the 
absorbed power including secondary photons will be 
developed. Further work will include analyzing the 
photons scattering back into the SCU chamber from the 
downstream end absorber. Additional physics including 
inelastic scattering will also be investigated. Finally, a 
more detailed analysis of photoelectron acceleration is 
planned using the incident angles from synrad3d. 

SUMMARY 
A preliminary qualitative analysis of the heat load due 

to photons and photoelectrons was presented for the APS 
SCU. Photon scattering from the upstream taper was 
found to significantly increase the photon absorption in 
the SCU chamber. Simulating an anti-reflecting surface in 
the tapers, such as that implemented for the LHC beam 
shield, reduced the photon absorption flux in the SCU 
chamber by almost a factor of 5.  
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