Author: McIntyre, P.M.
Paper Title Page
MOOBN3 Comparison of Accelerator Technologies for use in ADSS 4
 
  • W.-T. Weng, H. Ludewig, D. Raparia, M. Todosow, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: Work performed under the auspices of the US Department of Energy
Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of an SRF proton linac is evaluated. Future accelerator R&D required to improve each candidate accelerator design is discussed.
 
slides icon Slides MOOBN3 [1.540 MB]  
 
TUP104 Nb3Sn Block-coil Dipole for High-field Substitution in the LHC Lattice 1033
 
  • A. Sattarov, E.F. Holik, A.D. McInturff, P.M. McIntyre
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
A design is being developed to prototype for a dipole for this purpose: a block-coil dipole with 13 T short- sample field, 11 T working field, and 6 cm aperture. The dipole is a natural application of the high-field dipole strategy developed at Texas A&M, using simple pancake windings, flux-plate suppression of low-field multipoles, and bladder preloading. A short model dipole is planned.
 
 
TUP105 Fabrication of a Model Polyhedral Superconducting Cavity 1035
 
  • N. Pogue, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
The polyhedral cavity is a superconducting cavity structure in which a multi-cell cavity is built from a Roman-arch assembly of arc segments. Each segment has a Tesla-like r-z profile, and is fabricated either by bonding a Nb foil to a Cu substrate wedge or by depositing a Nb surface on the Cu substrate. The segments are assembled with an arrangement of locking rings and alignment pins, with a controlled narrow gap between segments over much of the arc-span of adjoining segments. A tubular channel is machined in the mating surfaces of the Cu wedges. Dipole modes are suppressed by locating along each channel a tube coated with rf-terminating ferrite. A first model of the cavity is being built to investigate mode structure, evaluate alternatives for the Nb surface fabrication, and develop assembly procedures.
 
 
TUP178 Current Progress of TAMU3: A Block Coil Stress-managed High Field (>12T) Nb3Sn Dipole 1163
 
  • E.F. Holik, C.P. Benson, R. Blackburn, N. Diaczenko, T. Elliott, A. Jaisle, A.D. McInturff, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Grant DE-FG02-06ER41405
TAMU3 is a block-coil short model dipole which embodies for the first time at high field (>12T) strength the techniques of stress management within the superconducting windings. The dipole consists of two planar racetrack coil assemblies, assembled within the rectangular aperture of a flux return core. Each assembly contains an inner and outer winding, and a high-strength support structure which is integrated within the assembly to intercept the Lorentz stress produced from the inner winding so that it does not accumulate to produce high stress in the outer winding. Iso-static preload is applied by pressurizing a set of thin stainless steel bladders with molten Woods metal and then freezing the metal under pressure. Current technology, difficulties, and present status of construction of magnet assembly will be presented.
 
 
THOCN6 Flux-coupled Cyclotron Stack: Optimization for Maximum Beam Power and Minimum Losses 2113
 
  • P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
A flux-coupled stack of isochronous cyclotrons has been proposed as a driver for Accelerator-Driven Subcritical Systems (ADSS) for thorium-cycle fission power. The issues that limit beam current and phase space brightness are evaluated, including space charge tune shift, synchro-betatron coupling, orbit separation at injection and extraction, RF propagation within the accelerator envelope, RF parasitic modes, and stability of electrostatic septum operation. A design is presented that offers good optimization of these criteria.
 
slides icon Slides THOCN6 [5.266 MB]