Author: Marusic, A.
Paper Title Page
MOOCN3 RHIC Polarized Proton Operation 41
 
  • H. Huang, L. A. Ahrens, I.G. Alekseev, E.C. Aschenauer, G. Atoian, M. Bai, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, W.W. MacKay, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, D. Smirnov, K.S. Smith, D. Steski, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper.
 
slides icon Slides MOOCN3 [2.331 MB]  
 
MOP296 Embedded System Architecture and Capabilities of the RHIC LLRF Platform 672
 
  • F. Severino, M. Harvey, T. Hayes, L.T. Hoff, R.C. Lee, A. Marusic, P. Oddo, K.S. Smith, K.L. Unger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A high performance FPGA based platform has been developed for the RHIC Low Level RF system upgrade, and is now replacing our aging VME based systems. This new platform employs a sophisticated embedded architecture to implement its core functionality. This architecture provides a control system interface, manages remote access to all configuration parameters and diagnostic data, supports communication between all system components, enables real time application specific processing, monitors system health, etc. This paper will describe the embedded architecture and its capabilities, with emphasis on its application at RHIC.
 
 
WEOBN1 Simultaneous Orbit, Tune, Coupling, and Chromaticity Feedback at RHIC 1394
 
  • M.G. Minty, A.J. Curcio, W.C. Dawson, C. Degen, R.L. Hulsart, Y. Luo, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, P. Oddo, V. Ptitsyn, G. Robert-Demolaize, T. Russo, V. Schoefer, C. Schultheiss, S. Tepikian, M. Wilinski
    BNL, Upton, Long Island, New York, USA
  • T. Satogata
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
All physics stores at the Relativistic Heavy Ion Collider are now established using simultaneous orbit, tune, coupling, and energy feedback during beam injection, acceleration to full beam energies, during the “beta-squeeze” for establishing small beam sizes at the interaction points, and during removal of separation bumps to establish collisions. In this report we describe the major changes made to enable these achievements. The proof-of-principle for additional chromaticity feedback will also be presented.
 
slides icon Slides WEOBN1 [8.054 MB]  
 
THP056 Near Real-time ORM Measurements and SVD Matrix Generation for 10 Hz Global Orbit Feedback In RHIC 2226
 
  • C. Liu, R.L. Hulsart, W.W. MacKay, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To reduce the effect of trajectory perturbations due to vibrations of the final focusing quadrupoles at RHIC, global orbit feedback was successfully prototyped during run-10. The system was tested using transfer functions between the beam position monitors and correctors obtained from the online optical model and a correction algorithm based on singular value decomposition (SVD). In run-11 we plan to self-calibrate the system using SVD matrices derived from orbit response matrix (ORM) measurements acquired real-time using the new FPGA-based signal processing. Comparisons between measurement and model and of feedback performance with the two methods are presented.
 
 
THP062 Beam Experiments Related to the Head-on Beam-beam Compensation Project at RHIC 2243
 
  • C. Montag, M. Bai, K.A. Drees, W. Fischer, A. Marusic, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments.
 
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.