Author: Liu, J.
Paper Title Page
WEP125 Higher-order Spin Resonances in 2.1 GeV/c Polarized Proton Beam 1716
 
  • M.A. Leonova, J. Askari, K.N. Gordon, A.D. Krisch, J. Liu, D.A. Nees, R.S. Raymond, D.W. Sivers, V.K. Wong
    University of Michigan, Spin Physics Center, Ann Arbor, MI, USA
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
 
  Funding: This research was supported by grants from the German Science Ministry
Spin resonances can cause partial or full depolarization or spin-flip of a polarized beam. We studied 1st-, 2nd- and 3rd-order spin resonances with a 2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron. We observed almost full spin-flip when crossing the 1st-order G*gamma=8−nuy vertical-betatron-tune spin resonance and partial depolarization near some 2nd- and 3rd-order resonances. We observed almost full depolarization near the 1st-order G*gamma=8−nux horizontal spin resonance and partial depolarization near some 2nd- and 3rd-order resonances. Moreover, we found that a 2nd-order nux resonance seems about as strong as some 3rd-order nux resonances, while some 3rd-order nuy resonances seem much stronger than a 2nd-order nuy resonance. It was thought that, for flat accelerators, vertical spin resonances are stronger than horizontal, and lower order resonances are stronger than higher order ones. The data suggest that many higher-order spin resonances, both horizontal and vertical, must be overcome to accelerate polarized protons to high energies; the data may help RHIC to better overcome its snake resonances between 100 and 250 GeV/c.