HIGHER ORDER SPIN RESONANCES IN 2.1 GeV/c POLARIZED PROTON BEAM*

M.A. Leonova, J.A. Askari, K.N. Gordon, A.D. Krisch, J. Liu, V.S. Morozov ${ }^{\dagger}$
D.A. Nees, R.S. Raymond, D.W. Sivers, V.K. Wong, Spin Physics Center, University of Michigan, Ann Arbor, MI 48109-1040, U.S.A. F. Hinterberger, Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany

Abstract

Spin resonances can depolarize or spin-flip a polarized beam. We studied $1^{\text {st }}$ and higher order spin resonances with stored $2.1 \mathrm{GeV} / c$ vertically polarized protons. The $1^{\text {st }}$ order vertical $\left(\nu_{y}\right)$ resonance caused almost full spinflip, while some higher-order ν_{y} resonances caused partial depolarization. The $1^{\text {st }}$ order horizontal $\left(\nu_{x}\right)$ resonance caused almost full depolarization, while some higher order ν_{x} resonances again caused partial depolarization. Moreover, a $2^{\text {nd }}$ order ν_{x} resonance is about as strong as some $3^{\text {rd }}$ order ν_{x} resonances, while some $3^{\text {rd }}$ order ν_{y} resonances are much stronger than a $2^{\text {nd }}$ order ν_{y} resonance. One thought that ν_{y} spin resonances are far stronger than ν_{x}, and that lower order resonances are stronger than higher order; the data does not support this.

INTRODUCTION

To study the strong interaction's spin dependence with polarized proton beams, one must preserve and control the polarization during acceleration and storage [1, 2, 3]. This can be difficult due to many $1^{\text {st }}$ and higher order depolarizing (spin) resonances. For vertically polarized beams in flat accelerators, it was thought that vertical spin resonances should be stronger than horizontal, and lower-order resonances should be stronger than higher-order ones [4]. There were several theoretical attempts to calculate the strengths of higher order spin resonances [5]. Some $2^{\text {nd }}$ order and synchrotron-sideband resonances were seen in electron rings [6] and proton rings [7]. Moreover, a $2^{\text {nd }}$ order proton resonance was studied in detail at IUCF [8].
We used $2.1 \mathrm{GeV} / c$ polarized protons stored in the COSY synchrotron for a detailed experimental study of higher-order spin resonances. Our preliminary ν_{y} data was presented at SPIN 2004 [9], but both the ν_{y} data and the never-presented ν_{x} data needed significant reanalysis. The reanalyzed data presented here suggest that many higherorder spin resonances, both ν_{y} and ν_{x}, must be overcome to accelerate polarized protons to high energies.
In flat circular rings, a beam proton's spin precesses around the vertical fields of the ring's dipole magnets. The spin tune $\nu_{s}=G \gamma$ is the number of spin precessions dur-

[^0]ing one turn around the ring, where $G=(g-2) / 2$ is the proton's gyromagnetic anomaly and γ is its Lorentz energy factor. Horizontal magnetic fields can perturb the proton's stable vertical polarization creating a spin resonance $[10,11]$. Spin resonances occur when
\[

$$
\begin{equation*}
\nu_{s}=k \nu_{x}+l \nu_{y}+m, \tag{1}
\end{equation*}
$$

\]

where k, l and m are integers; ν_{x} and ν_{y} are the horizontal and vertical betatron tunes, respectively. Imperfection spin resonances occur when $k=l=0$. Intrinsic spin resonances occur when either $k \neq 0$ or $l \neq 0$, or both; the sum $|k|+|l|$ defines each resonance's order.

EXPERIMENTAL PROCEDURE AND RESULTS

The experiment's apparatus, including the COSY storage ring [12], the EDDA detector [13], the electron cooler [14], the low energy polarimeter (LEP) [15], the injector cyclotron, and the polarized ion source [16], were shown in Fig. 1 of Ref. [17]. The beam from the polarized H^{-}ion source was accelerated by the cyclotron to 45 MeV and then strip-injected into COSY.

Before the injection, the LEP measured the H^{-}beam's polarization to monitor its stability. The cylindrical EDDA detector measured the beam's polarization in COSY after crossing the resonances. We reduced its systematic errors by cycling the polarized source between the up and down vertical polarization states. The measured initial flat-top polarization was typically about 75%.

In the COSY ring, the protons' average circulation frequency f_{c} was 1.49185 MHz at $2.1 \mathrm{GeV} / c$, where their Lorentz energy factor was $\gamma=2.4514$. For these parameters, the spin tune $\nu_{s}=G \gamma$ was 4.395. During injection, acceleration and at the beginning of the flat-top the betatron tunes ν_{x} and ν_{y} were kept fixed at 3.575 and 3.525, respectively. This kept both betatron tunes away from any $1^{\text {st }}, 2^{\text {nd }}$, or $3^{\text {rd }}$ order spin resonances on flat-top. After reaching the flat-top, we varied the ring quadrupoles' currents to vary either ν_{y} or ν_{x}, while keeping the other tune fixed; then we measured the polarization.
Figure 1 shows the betatron tunes' behavior in a typical COSY cycle, during the higher order vertical (ν_{y}) spin resonance study. We first ramped ν_{y} rapidly from 3.525 to some value between $3.51-3.71$ during 0.5 s , next we slowly ramped ν_{y} through a very small tune range of about

Figure 1: Typical ν_{y} betatron tune ramp during COSY cycle.
0.002 during 2 s , with ν_{x} fixed at 3.575 ; then we measured the polarization. The rapid ramp reduced the effects of the resonances between the injection tune of 3.525 and the start of the slow ramp, while each slow ν_{y} ramp enhanced the effect of any spin resonance in that small ν_{y} range. We used Eq. (1) to calculate the positions of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ order resonances that could be studied between the half-integer 3.5 and quarter-integer 3.75 beam blow-up resonances.

The measured LEP asymmetries indicated that the initial polarization changed by about 10% during the experiment. Thus, we normalized each final COSY polarization measured by EDDA to the measured LEP asymmetry for that data-run. Each EDDA data-run was typically 25 min long; thus, the LEP data bin sizes were typically $\pm 30 \mathrm{~min}$ centered on EDDA runs.
To test the data's reproducibility, we tried to measure polarizations for the same settings several times. However, when we precisely measured ν_{y} after each setting, we found that they varied at the ± 0.0002 level. Thus, there were many partly-overlapping points that obscured the polarization's behavior near each resonance. We tried to clarify it by combining points with nearby ν_{y} values, except in the region where the polarization changed very rapidly (between ν_{y} values of 3.586 to 3.620). We first combined all pairs of points that had ν_{y} values within $\delta \nu_{y}=0.1 \times 10^{-4}$. To ensure that this did not bias the results, we combined the data in both the increasing (L-R) and decreasing (R-L) orders in ν_{y}; the two results were identical. We then increased the $\delta \nu_{y}$ intervals in steps of 0.1×10^{-4}; the input data for each step were the output data from the previous step. The error and position of each newly combined point after each step were the properly weighted averages of the errors and positions of the two combined points; each new horizontal bar encompassed the slow ramps of both combined points.
Figure 2 plots polarization vs. ν_{y} for the combination interval of $\delta \nu_{y}=7.6 \times 10^{-4}$, where 36 points were incorporated. The plot shows clear resonance behavior around sev-

Figure 2: Polarization normalized to the LEP asymmetry plotted vs. ν_{y}. The horizontal bars show the combined slow ν_{y} ramps. The calculated positions are indicated by dashed lines for each spin resonance, and by solid lines for each beam-blow-up resonance. Arrow shows ν_{y} at injection.
eral $3^{\text {rd }}$ order resonances, but the behavior around the $2^{\text {nd }}$ order resonance is still unclear. When we further increased the combination interval size, the polarization's behavior around the narrow resonances was broadened excessively, as expected.

We observed full spin-flip when the $1^{\text {st }}$ order vertical $\left(\nu_{y}\right)$ spin resonance was crossed and partial depolarization near several $3^{\text {rd }}$ order resonances and possibly near a $2^{\text {nd }}$ order resonance. The $3^{\text {rd }}$ order $8+\nu_{x}-2 \nu_{y}$ resonance and the partly overlapping $15-3 \nu_{y}$ and $8-2 \nu_{x}+\nu_{y}$ resonances appear much stronger than the $2^{\text {nd }}$ order $2 \nu_{y}-3$ resonance. This suggests that many significant $3^{\text {rd }}$ and possibly higher order spin resonances must be overcome to accelerate and store polarized protons above 100 GeV .

We also studied the higher-order horizontal $\left(\nu_{x}\right)$ spin resonances by using ν_{x} ramps similar to the ν_{y} ramps shown in Fig. 1, with ν_{y} fixed at 3.525. The polarizations are plotted in Fig. 3 against ν_{x}. Only 5 pairs of overlapping points were combined, as earlier described for Fig. 2, at the combination interval of $\delta \nu_{x}=20 \times 10^{-4}$.

Figure 3 shows almost full depolarization at the $1^{\text {st }}$ order spin resonance. Above this resonance, the polarization increased steadily because this fairly strong resonance was crossed at increasing $\Delta \nu_{x} / \Delta t$ rates, which decreased the depolarization [10]; $\Delta \nu_{x} / \Delta t$ increased because the ramp time Δt was fixed at 0.5 s , while the ramp range $\Delta \nu_{x}$ was increased. We found partial depolarization near a $2^{\text {nd }}$ order ν_{x} resonance and near several $3^{\text {rd }}$ order ν_{x} resonances; these ν_{x} resonances all appear about equally strong.

Figure 3: Polarization normalized to the LEP asymmetry plotted vs. ν_{x}. The horizontal bars show the combined slow ν_{x} ramps. The calculated positions are indicated by dashed lines for each spin resonance, and by solid lines for each beam-blow-up resonance. Arrow shows ν_{x} at injection.

Note that the polarization increased significantly at the two ν_{x} beam blow-up resonances probably because they removed mostly those beam particles with larger betatron amplitudes, as supported by the sharp decrease in the measured count rates in EDDA at each blow-up resonance. These outside particles were probably more depolarized [18] when crossing the strong $1^{\text {st }}$ order resonance; thus, removing them increased the beam's polarization while decreasing its intensity.

There have been several theoretical attempts to calculate the strengths of higher order spin resonances [5]; some calculations suggest that odd order resonances may be stronger than even-order resonances for rings with Siberian snakes. It is not yet clear if these theoretical approaches allow one to explain our experimental results. We plan to soon obtain numerical values of the strengths ε.

SUMMARY

We used $2.1 \mathrm{GeV} / c$ polarized protons stored in COSY to study $1^{\text {st }}$ and higher order spin resonances. We observed almost full spin-flip when the $1^{\text {st }}$ order ν_{y} spin resonance was crossed and partial depolarization near the $2^{\text {nd }}$ and $3^{\text {rd }}$ order spin resonances. We also observed almost full depolarization near the $1^{\text {st }}$ order ν_{x} spin resonance and partial depolarization near the $2^{\text {nd }}$ and $3^{\text {rd }}$ order spin resonances. The observed $2^{\text {nd }}$ order ν_{x} and several $3^{\text {rd }}$ order ν_{x} resonances all appear about equally strong; while some $3^{\text {rd }}$ order ν_{y} resonances appear much stronger than the $2^{\text {nd }}$ or-
der ν_{y} resonance. It was thought that, for vertically polarized protons in flat accelerators, vertical spin resonances are stronger than horizontal, and lower order resonances are stronger than higher order ones. The data suggest that many higher order spin resonances, both horizontal and vertical, must be overcome to accelerate polarized protons to high energies; these data may help RHIC to better overcome its snake resonances between 100 and $250 \mathrm{GeV} / c$.

ACKNOWLEDGMENTS

We thank COSY's staff for a successful run. We thank E.D. Courant, Ya.S. Derbenev, D. Eversheim, R. Gebel, A. Lehrach, B. Lorentz, R. Maier, Yu.F. Orlov, D. Prasuhn, H. Rohdjeß, T. Roser, H. Sato, A. Schnase, W. Scobel, E.J. Stephenson, H. Stockhorst, K. Ulbrich and K. Yonehara for help and advice.

REFERENCES

[1] D.G. Crabb et al., Phys. Rev. Lett. 41, 1257 (1978).
[2] Proc. SPIN 2002, AIP Conf. Proc. 675 (AIP, NY, 2003).
[3] Proc. SPIN 2004, eds. K. Aulenbacher et al. (World Scientific, Singapore, 2005).
[4] R.D. Ruth et al., AIP Conf. Proc. 145 (AIP, NY, 1986), p62; V.A. Anferov et al., Acceleration of Polarized Protons to 120 GeV and 1 TeV at Fermilab, Univ. of Michigan Report UM HE 95-09 (July 24, 1995), p 127.
[5] S. Tepikian, AIP Conf. Proc. 187 (AIP, NY, 1989), p 1450; S.R. Mane, ibid, p 959; G.H. Hoffstaetter and M. Vogt, Phys. Rev. E 70, 056501 (2004).
[6] J.R. Johnson et al., NIM 204, 261 (1983).
[7] J.E. Goodwin et al., Phys. Rev. Lett. 64, 2779 (1990).
[8] C. Ohmori et al., Phys. Rev. Lett. 75, 1931 (1995).
[9] A.D. Krisch et al., Ref. 3, p 691.
[10] M. Froissart and R. Stora, NIM 7, 297 (1960).
[11] E.D. Courant, Bull. Am. Phys. Soc. 7, 33 (1962) and Rpt. BNL-EDC-45 (1962); B.W. Montague, Phys. Rep. 113, 24 (1984); S.Y. Lee, Spin Dynamics and Snakes in Synchrotrons (World Scientific, Singapore, 1997), p 26.
[12] R. Maier, NIM A 390, 1 (1997);
A. Lehrach et al., Ref. 2, p 153.
[13] V. Schwarz et al., Proc. SPIN 1998, eds. N.E. Tyurin et al., (World Scientific, Singapore, 1999), p 560; M. Altmeier et al., Phys. Rev. Lett. 85, 1819 (2000).
[14] H. Stein et al., At. Energ. 94, 24 (2003).
[15] D. Chiladze et al., Phys. Rev. ST-AB 9, 050101 (2006).
[16] P.D. Eversheim et al., AIP Conf. Proc. 339 (AIP, NY, 1995), p 668; R. Weidmann et al., Rev. Sci. Instrum. 67, 1357 (1996); O. Felden et al., Proc. 9th Int. WS Polar. Sources, Targets, 2001, eds. V.P. Derenchuk and B. von Przewoski (World Scientific, Singapore, 2002), p. 200.
[17] M.A. Leonova et al., Phys. Rev. Lett. 93, 224801 (2004).
[18] S.Y. Lee, Spin Dynamics and Snakes in Synchrotrons (World Scientific, Singapore, 1997), p 58.

[^0]: ${ }^{*}$ The work was supported by grants from the German BMBF Science Ministry and its JCHP-FFE program at COSY.
 ${ }^{\dagger}$ now at Thomas Jefferson National Lab, Newport News, VA 23606

