Author: Li, Y.
Paper Title Page
MOP276 Applying Cascaded Parameter Scan to Study Top-off Safety in NSLS-II Storage Ring 627
 
  • Y. Li, S.V. Badea, W.R. Casey, G. Ganetis, R. Heese, H.-C. Hseuh, P.K. Job, S. Krinsky, B. Parker, T.V. Shaftan, S.K. Sharma, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
In this paper we introduce a new algorithm, the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for the NSLS-II top-off injection. In top-off safety analysis, one must track particles populating phase space through a beamline containing magnets and apertures and clearly demonstrate that for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, the number of tracking runs increases exponentially with the number of magnet settings. In the cascaded parameter scan method, the number of tracking runs only increases linearly. This reduction of exponential to linear dependence on the number of setpoints, greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number of setpoints scanned for each magnet. An example of applying this approach to analyze an NSLS-II beamline, the damping wiggler beamline, is also given.
 
 
WEP065 Multiobjective Dynamic Aperture Optimization at NSLS-II 1597
 
  • L. Yang, W. Guo, S. Krinsky, Y. Li
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In this paper we present a multiobjective approach to the dynamic aperture (DA) optimization. Taking the NSLS- II lattice as an example, we have used both sextupoles and quadrupoles as tuning variables to optimize both on-momentum and off-momentum DA. The geometric and chromatic sextupoles are used for nonlinear properties while the tunes are independently varied by quadrupoles. The dispersion and emittance are fixed during tunes variation. The algorithms, procedures, performances and results of our optimization of DA will be discussed and they are found to be robust, general and easy to apply to similar problems.
 
 
THP136 Short Pulse Generation by Laser Slicing at NSLSII 2381
 
  • L.-H. Yu, A. Blednykh, O.V. Chubar, W. Guo, S. Krinsky, Y. Li, T.V. Shaftan, G.M. Wang, F.J. Willeke, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886.
We propose an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. In this paper we discuss the basic parameters for this system and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring.
 
 
THP189 Low Horizontal Beta Function in Long Straights of the NSLS-II Lattice 2471
 
  • F. Lin, J. Bengtsson, W. Guo, S. Krinsky, Y. Li, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this note, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimizations of dynamic aperture required for good injection efficiency and adequate Touschek lifetime.
 
 
THP190 Additional Quadrupoles at Center of Long Straights in the NSLS-II Lattice 2474
 
  • F. Lin, J. Bengtsson, W. Guo, S. Krinsky, Y. Li, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this note, we explore the possibility of installing additional quadrupoles at the center of selected long straight sections in order to provide two low-beta source locations for undulators. The required modification to the linear lattice is discussed as well as the preservation of adequate dynamic aperture required for good injection efficiency and adequate Touschek lifetime.
 
 
TUP229 Implementation and Operation of Electron Cloud Diagnostics for CesrTA 1250
 
  • Y. Li, J.V. Conway, X. Liu, V. Medjidzade, M.A. Palmer
    CLASSE, Ithaca, New York, USA
 
  Funding: Work Supported by NSF Grant #PHY-0734867 & DOE Grant #DE-FC02-08ER41538
The vacuum system of Cornell Electron Storage Ring (CESR) was successfully reconfigured to support CesrTA physics programs, including electron cloud (EC) build-up and suppression studies. One of key features of the reconfigured CESR vacuum system is the flexibility for exchange of various vacuum chambers with minimized impact to the accelerator operations. This is achieved by creation of three short gate-valve isolated vacuum sections. Over the last three years, many vacuum chambers with various EC diagnostics (such as RFAs, shielded pickups, etc) were rotated through these short experimental sections. With these instrumented test chambers, EC build-up was studied in many magnetic field types, including dipoles, quadrupoles, wigglers and field-free drifts. EC suppression techniques by coating (TiN, NEG and amorphous-C), surface textures (grooves) and clearing electrode are incorporated in these test chambers to evaluate their vacuum performance and EC suppression effectiveness. We present the implementation and operations of EC diagnostics.
 
 
TUP230 In-situ Secondary Electron Yield Measurement System at CesrTA 1253
 
  • Y. Li, J.V. Conway, S. Greenwald, J.-S. Kim, V. Medjidzade, T.P. Moore, M.A. Palmer, C.R. Strohman
    CLASSE, Ithaca, New York, USA
  • D. Asner
    Carleton University, College of Natural Sciences, Ottawa, Ontario, Canada
 
  Funding: Work Supported by NSF Grant #PHY-0734867 & DOE Grant #DE-FC02-08ER41538
Measuring the secondary electron yield (SEY) on technical surfaces in accelerator vacuum systems provides essential information for the study of electron cloud growth and suppression, with application to many accelerator R&D projects. As a part of the CesrTA research program, we developed and deployed an in-situ SEY measurement system. A two-sample SEY system was installed in the CesrTA vacuum system with one sample exposed to direct synchrotron radiation (SR) and the other sample exposed to scattered SR. The SEYs of both samples were measured as a function of the SR dosages. In this paper, we describe the in-situ SEY measurement systems and the initial results on bare aluminum (6061-T6), TiN-coated aluminum, amorphous carbon-coated aluminum, and amorphous carbon-coated copper samples.
 
 
WEP142 Electron Cloud Modeling Results for Time-resolved Shielded Pickup Measurements at CesrTA 1752
 
  • J.A. Crittenden, Y. Li, X. Liu, M.A. Palmer, J.P. Sikora
    CLASSE, Ithaca, New York, USA
  • S. Calatroni, G. Rumolo
    CERN, Geneva, Switzerland
 
  Funding: Support by DOE contract DE-FC02-08ER41538 and NSF contract PHY-0734867
The Cornell Electron Storage Ring Test Accelerator (CesrTA) program includes investigations into electron cloud buildup, applying various mitigation techniques in custom vacuum chambers. Among these are two 1.1 meter long sections located symmetrically in the east and west arc regions. These chambers are equipped with pickup detectors shielded against the direct beam-induced signal. Here we report on results from the ECLOUD modeling code which highlight the sensitivity of these measurements to model parameters such as the photoelectron energy distributions, and the secondary elastic yield value.
 
 
WEP195 Time Resolved Measurement of Electron Clouds at CesrTA using Shielded Pickups 1855
 
  • J.P. Sikora, M.G. Billing, J.A. Crittenden, Y. Li, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, and the US Department of Energy DE-FC02-08ER41538.
The Cornell Electron Storage Ring has been reconfigured as a Test Accelerator (CesrTA). Shielded pickups have been installed at three locations in CesrTA for the purpose of studying time resolved electron cloud build-up and decay. The pickup design provides electromagnetic shielding from the beam wakefield while allowing cloud electrons in the vacuum space to enter the detector. This paper describes the hardware configuration and capabilities of these detectors at CesrTA, presents examples of measurements, and outlines the interpretation of detector signals with regard to electron clouds. Useful features include time-of-flight measurement of cloud electrons and the use of a solenoidal field for energy measurement of photoelectrons. Measurement techniques include the use of two bunches spaced in multiples of 4ns, where the second bunch samples the decay of the cloud produced by the first bunch.
 
 
WEP244 Growth and Characterization of Bialkali Photocathodes for Cornell ERL Injector 1942
 
  • L. Cultrera, I.V. Bazarov, J.V. Conway, B.M. Dunham, Y. Li, X. Liu, K.W. Smolenski
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  The requirements of high quantum efficiency in the visible spectral range and that of an increased lifetime as compared to cesiated GaAs can be met by multi-alkali photocathodes, either CsKSb or NaKSb. In this paper we detail the procedures that allow the growth of thin films suitable for the ERL photoinjector operating at Cornell University. Quantum efficiency, spectral response, and surface characterization of deposited samples is presented. A load-locked multi-alkali cathode growth system is also described.  
 
TUOBS2 Cornell ERL Research and Development 729
 
  • C.E. Mayes, I.V. Bazarov, S.A. Belomestnykh, D.H. Bilderback, M.G. Billing, J.D. Brock, E.P. Chojnacki, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, E. Fontes, C.M. Gulliford, D.L. Hartill, G.H. Hoffstaetter, V.O. Kostroun, F.A. Laham, Y. Li, M. Liepe, X. Liu, F. Löhl, A. Meseck, A.A. Mikhailichenko, H. Padamsee, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, V.D. Shemelin, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, Y. Xie
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731.
Energy Recovery Linacs (ERLs) are proposed as drivers for hard X-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. The advantages of ERL lightsources will be explained, and the status of plans for such facilities will be described. In particular, Cornell University plans to build an ERL light source, and the preparatory research for its construction will be discussed. This will include the prototype injector for high current CW ultra-low emittance beams, superconducting CW technology, the transport of low emittance beams, halo formation from intrabeam scattering, the mitigation of ion effects, the suppression of instabilities, and front to end simulations. Several of these topics could become important for other modern light source projects, such as SASE FELs, HGHG FELs, and XFELOs.
 
slides icon Slides TUOBS2 [5.632 MB]