Author: Kondratenko, A.M.
Paper Title Page
TUOCN2 Spin-Manipulating Polarized Deuterons 747
 
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • A. Chao
    SLAC, Menlo Park, California, USA
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • A.D. Krisch, M.A. Leonova, R.S. Raymond, D.W. Sivers, V.K. Wong
    University of Michigan, Spin Physics Center, Ann Arbor, MI, USA
  • E.J. Stephenson
    IUCF, Bloomington, Indiana, USA
 
  Funding: This research was supported by grants from the German BMBF Science Ministry, its JCHP-FFE program at COSY and the US DOE.
Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.
 
slides icon Slides TUOCN2 [4.921 MB]  
 
THP093 Design Status of MEIC at JLab 2306
 
  • Y. Zhang, S. Ahmed, S.A. Bogacz, P. Chevtsov, Y.S. Derbenev, A. Hutton, G.A. Krafft, R. Li, F. Marhauser, V.S. Morozov, F.C. Pilat, R.A. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M.G. Tiefenback, H. Wang, B.C. Yunn
    JLAB, Newport News, Virginia, USA
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • D.P. Barber
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • S.L. Manikonda, P.N. Ostroumov
    ANL, Argonne, USA
  • H. K. Sayed
    ODU, Norfolk, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
An electron-ion collider (MEIC) is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present MEIC design selects a ring-ring collider option and covers a CM energy range up to 51 GeV for both polarized light ions and un-polarized heavy ions, while higher CM energies could be reached by a future upgrade. The MEIC stored colliding ion beams, which will be generated, accumulated and accelerated in a green field ion complex, are designed to match the stored electron beam injected at full energy from the CEBAF in terms of emittance, bunch length, charge and repetition frequency. This design strategy ensures a high luminosity above 1034 s−1cm-2. A unique figure-8 shape collider ring is adopted for advantages of preserving ion polarization during acceleration and accommodation of a polarized deuteron beam for collisions. Our recent effort has been focused on completing this conceptual design as well as design optimization of major components. Significant progress has also been made in accelerator R&D including chromatic correction and dynamical aperture, beam-beam, high energy electron cooling and polarization tracking.