Author: Ives, R.L.
Paper Title Page
TUP126 Development of a 10 kW CW, S-Band, PPM Focused Klystron 1068
 
  • P. Ferguson, R.L. Ives, D. Marsden, M.E. Read
    CCR, San Mateo, California, USA
 
  Funding: US Department of Energy SBIR Contract DE-SC0004558
Calabazas Creek Research Inc. (CCR) is developing a 100 kW CW, 2.815 GHz klystron for use in the Advanced Photon Source upgrade light source at Argonne National Laboratory. Periodic permanent magnet (PPM) focusing is used to avoid loss in efficiency due to the power normally required for a solenoid. The PPM structure elements consist of 4 disk (pill box) magnets with a clover-leaf shaped iron pole piece. The gaps between the magnets permit the introduction of liquid cooling into the RF circuit. Design tools include the large signal codes KLSC and TESLA for the efficiency calculations, MAXWELL 3D for the magnetic fields, and the CCR 3D code BOA for the beam trajectories. From initial simulations with seven cavities, the efficiency will be over 62% with a beam voltage of 47 kV. The saturated gain is 44 dB. The design emphasizes high reliability, with simple construction, robust cooling and low thermal loading through high efficiency. The paper will include the details of the design, including results of the simulations of the RF and magnetic structures, beam trajectories, and thermo-mechanical analyses.
 
 
TUP128 Development of a 402.5 MHz 140 kW Inductive Output Tube (IOT) 1070
 
  • M.E. Read, T. Bui, R.L. Ives, R.H. Jackson
    CCR, San Mateo, California, USA
  • I.A. Chernyavskiy, H. Freund
    SAIC, McLean, USA
 
  Funding: US Department of Energy under SBIR contract DE-SC0004566
Calabazas Creek Research Inc. (CCR) is developing a pulsed 140 kW, 402.5 MHz Inductive Output Tube (IOT) for use in proton accelerators. Unlike other high power multiple-beam IOT's currently under development, this device will use a single electron beam, and will be less expensive and have a higher reliability. The program includes the use of new design tools, including NEMESIS and a version of CCR's 3D Beam Optics Analysis (BOA) code modified to include time dependent modeling. The design will include the electron gun, collector, input and output cavities, input and output couplers and the RF output window. An emphasis will be placed on the electron gun, which will as usual include a grid for the high frequency modulation, and the input cavity. The new version of BOA is expected to be particularly useful in modeling the formation of the bunched beam and will replace the relatively slow 3D PIC code MAGIC as the primary design tool. HFSS and NEMESIS will be used for design of the input cavity. The paper will include details of the design.