Author: Holzscheiter, M.
Paper Title Page
THP012 Development of Imaging Techniques for Medical Accelerators in the QUASAR Group 2160
 
  • C.P. Welsch, T. Cybulski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Boll, S. Sellner, S. Tegami
    MPI-K, Heidelberg, Germany
  • M. Holzscheiter
    UNM, Albuquerque, New Mexico, USA
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the EU under contract PIIF-GA-2009-234814, PITN-GA-2008-215080 and DFG under WE3565/5.
Ions offer an increased precision in radiotherapy due to their specific depth-dose properties. This precision can only be fully exploited if exact knowledge of the particle beam properties, as well as the exact range of the particles in the inhomogeneous target, is available. The QUASAR Group has addressed the key issues in a number of different ways: Using a monolithic active pixel sensor, designed for dead time-free operation, we have developed a beam monitoring system capable of monitoring pulsed and continuous beams at typical therapeutic energies and intensities in real time during patient treatment; using a non-intrusive detector system based on the VELO detector, we will measure variations in beam properties without intersecting the beam core altogether; using liquid ionization chambers, we aim at obtaining information on the biological quality of the beam; using a simple set-up based on a silicon pixel detector, developed for the ALICE experiment, we have demonstrated the feasibility of detecting the distal edge of the Bragg peak in antiproton beams by detecting the pions resulting from pbar-nucleon annihilations. This paper gives an overview of these studies.