Author: Hoffstaetter, G.H.
Paper Title Page
MOP290 Self Excited Operation for a 1.3 GHz 5-cell Superconducting Cavity 660
 
  • K. Fong, M.P. Laverty, Q. Zheng
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • E.P. Chojnacki, G.H. Hoffstaetter, D. Meidlinger, S.P. Wang
    CLASSE, Ithaca, New York, USA
 
  Self-Excited operation of a resonant system does not require any external frequency tracking as the frequency is determined by the phase lag of the self-excited loop, it is therefore particularly useful for testing high Q RF cavities that do not have an automatic tuning mechanism. Self-exited operation has long been shown to work with single-cell cavities. We have recently demonstrated that it is also possible for multi-cell cavities, where multiple resonant modes are present. The Cornell 1.3 GHz 5-cell superconducting cavities was operated using Self-Excited operation and we were able to lock to the accelerating (pi) mode, despite the presence of neighbouring modes that are less than 10 MHz away. By means of the loops phase advance, we were able to select which mode was excited.  
 
TUP096 Beam Pipe HOM Absorber for SRF Cavities 1012
 
  • R. Sah, A. Dudas, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • G.H. Hoffstaetter, M. Liepe, H. Padamsee, V.D. Shemelin
    CLASSE, Ithaca, New York, USA
  • K. Ko, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0002733 and USDOE Contract No. DE-AC05-84-ER-40150.
Superconducting RF (SRF) systems typically contain resonances at unwanted frequencies, or higher order modes (HOM). For storage ring and linac applications, these higher modes must be damped by absorbing them in ferrite and other lossy ceramic materials. Typically, these absorbers are brazed to substrates that are often located in the drift tubes adjacent to the SRF cavity. These HOM absorbers must have broadband microwave loss characteristics and must be thermally and mechanically robust, but the ferrites and their attachments are weak under tensile and thermal stresses and tend to crack. Based on prior work on HOM loads for high current storage rings and for an ERL injector cryomodule, a HOM absorber with improved materials and design is being developed for high-gradient SRF systems. This work will use novel construction techniques (without brazing) to maintain the ferrite in mechanical compression. Attachment techniques to the metal substrates will include process techniques for fully-compressed ferrite rings. Prototype structures will be fabricated and tested for mechanical strength under thermal cycling conditions.
 
 
THP144 FELs as X-ray Sources in ERL Facilities 2390
 
  • A. Meseck
    HZB, Berlin, Germany
  • G.H. Hoffstaetter, F. Löhl, C.E. Mayes
    CLASSE, Ithaca, New York, USA
 
  Funding: This work has been supported by NSF award DMR-0807731.
Hard x-ray Energy Recovery Linacs (ERLs) operate with high-brightness electron beams, matching the requirements for X-ray FELs in terms of emittance and energy spread. We have analyzed in how far it is feasible to include X-ray FELs in ERL facilities. X-ray FEL Oscillators require comparatively low peak currents and are therefore good candidates for FEL sources in ERLs. However, also high-gain FELs do not seem out of reach when bunch-compression schemes for higher peak currents are utilized. Using the proposed Cornell ERL as an example, different FEL concepts are discussed and their suitability as X-ray sources are analyzed.
 
 
FROBS3 Progress on Superconducting RF for the Cornell Energy-Recovery-Linac 2580
 
  • M. Liepe, G.H. Hoffstaetter, S. Posen, J. Sears, V.D. Shemelin, M. Tigner, N.R.A. Valles, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cornell University is developing the superconducting RF technology required for the construction of a 5 GeV, 100 mA light source driven by an energy-recovery linac. Currently, a 100 mA injector cryomodule is under extensive testing and prototypes of the components of the SRF main linac cryomodule are under development, fabrication and testing. In this paper we give an overview of these recent activities at Cornell.  
slides icon Slides FROBS3 [10.577 MB]  
 
TUOBS2 Cornell ERL Research and Development 729
 
  • C.E. Mayes, I.V. Bazarov, S.A. Belomestnykh, D.H. Bilderback, M.G. Billing, J.D. Brock, E.P. Chojnacki, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, E. Fontes, C.M. Gulliford, D.L. Hartill, G.H. Hoffstaetter, V.O. Kostroun, F.A. Laham, Y. Li, M. Liepe, X. Liu, F. Löhl, A. Meseck, A.A. Mikhailichenko, H. Padamsee, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, V.D. Shemelin, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, Y. Xie
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731.
Energy Recovery Linacs (ERLs) are proposed as drivers for hard X-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. The advantages of ERL lightsources will be explained, and the status of plans for such facilities will be described. In particular, Cornell University plans to build an ERL light source, and the preparatory research for its construction will be discussed. This will include the prototype injector for high current CW ultra-low emittance beams, superconducting CW technology, the transport of low emittance beams, halo formation from intrabeam scattering, the mitigation of ion effects, the suppression of instabilities, and front to end simulations. Several of these topics could become important for other modern light source projects, such as SASE FELs, HGHG FELs, and XFELOs.
 
slides icon Slides TUOBS2 [5.632 MB]