Author: Hering, P.
Paper Title Page
MOP242 Evaluation of Temporal Diagnostic Techniques for Two-bunch FACET Beam 568
 
  • M.D. Litos, M.R. Bionta, V.A. Dolgashev, R.J. England, D. Fritz, A. Gilevich, P. Hering, M.J. Hogan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
Three temporal diagnostic techniques are considered for use in the FACET facility at SLAC, which will incorporate a unique two-bunch beam for plasma wakefield acceleration experiments. The results of these experiments will depend strongly on the the inter-bunch spacing as well as the longitudinal profiles of the two bunches. A reliable, single-shot, high resolution measurement of the beam’s temporal profile is necessary to fully quantify the physical mechanisms underlying the beam driven plasma wakefield acceleration. In this study we show that a transverse deflecting cavity is the diagnostic which best meets our criteria.
 
 
THP184 Tuning of the LCLS Linac for User Operation 2462
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, Z. Huang, R.H. Iverson, N. Lipkowitz, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, T.J. Smith, J.L. Turner, J.J. Welch, W.E. White, J. Wu, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515.
With the Linac Coherent Light Source (LCLS) now in its third user run, reliable electron beam delivery at various beam energies and charge levels has become of high operational importance. In order to reduce the beam tuning time required for such changes, several diagnostics and feed-forward procedures have been implemented. We report on improved lattice diagnostics to detect magnet, model, and diagnostics errors as well as on measurements of transverse RF kicks and static field contributions and corresponding correction procedures to facilitate beam energy changes.
 
 
THP168 FEL Beam Stability in the LCLS* 2423
 
  • J.L. Turner, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, Y. Feng, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, K. Horovitz, Z. Huang, R.H. Iverson, D. Kharakh, A. Krasnykh, J. Krzywinski, H. Loos, M. Messerschmidt, S.P. Moeller, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: *This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
During commissioning and operation of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center electron and x-ray beam size, shape, centroid motion have been studied. The studies, sources, and remediation are summarized in this paper.