Author: Garmendia, N.
Paper Title Page
TUP042 RF Measurements and Numerical Simulations for the Model of the Bilbao Linac Double Spoke Cavity 886
 
  • J.L. Munoz, I. Bustinduy, N. Garmendia, V. Toyos
    ESS Bilbao, Derio, Spain
  • E. Asua
    UPV-EHU, Leioa, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio, Spain
  • J. Lucas
    Elytt Energy, Madrid, Spain
 
  A model of a double spoke resonant cavity (operating frequency 352.2 MHz, βg=0.39) has been designed and fabricated in aluminium. The RF characteristics of the cavity have been measured in our laboratory. Experimental measurements have involved the determination of the main cavity parameters, and the characterization of the accelerating electric field profile along the cavity axis by means of a fully automated bead-pullmethod. Additionally, numerical simulations using COMSOL code have been used to fully characterize the cavity. Electromagnetic numerical simulations of the cavity have been also performed to determine its main figures of merit and to identify the most suitable position for opening a port to install a power coupler. In this paper we report the cavity cold model description, the experimental setup and corresponding techniques, together with the numerical methods. The obtained results are described and discussed in detail.  
 
WEOBN4 Multipurpose Controller Based on a FPGA with EPICS Integration 1407
 
  • P. Echevarria, I. Arredondo, N. Garmendia, H. Hassanzadegan, L. Muguira
    ESS Bilbao, Bilbao, Spain
  • D. Belver, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  In this work a multipurpose configurable control system is presented. This controller is based on a high performance FPGA for a fast control connected to a Host PC which works as an EPICS server to allow a remote control. The communication between both parts is made by a register bank implemented in the FPGA and which is accessible by the Host PC by means of a Compact PCI bus. The initialization values, the numeric representation of the digital signals and the EPICS database are configured by an XML file. This control scheme has been prototyped for two applications: Low Level RF and Beam Position Monitoring. The former contains three digital loops to control the amplitude and phase of the RF supply and the geometry of the cavity. The latter processes the information from four capacitive buttons to calculate the position of the beam. In both systems, the necessary parameters for the digital processing of the acquired signals (using fast ADCs) and intermediate calculations are stored in the register bank connected to the cPCI bus. These systems are being developed for the ESS-Bilbao facility which will be built in Bilbao, Spain.  
slides icon Slides WEOBN4 [0.621 MB]