Author: Dickover, C.
Paper Title Page
WEOCN4 Electron Beam Diagnostics of the JLab UV FEL 1446
 
  • P. Evtushenko, S.V. Benson, G.H. Biallas, J.L. Coleman, C. Dickover, D. Douglas, M. Marchlik, D.W. Sexton, C. Tennant
    JLAB, Newport News, Virginia, USA
 
  In this contribution we describe various systems of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line of existing 10kW IR Upgrade FEL. Here we describe a set of the following systems. A combination of OTR and phosphor viewers used for measurements of a transverse beam profile, transverse emittance, Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurements system is used to setup bunch compression in an optimal way such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of the diagnostics system made its contribution to achieve the first lasing of the FEL after about 60 hours of beam operation.  
slides icon Slides WEOCN4 [8.864 MB]  
 
THP171 Demonstration of 3D Effects with High Gain and Efficiency in a UV FEL Oscillator 2429
 
  • S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, C. Dickover, D. Douglas, F.K. Ellingsworth, P. Evtushenko, C.W. Gould, J.G. Gubeli, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, J. Kortze, R.A. Legg, M. Marchlik, S.W. Moore, G. Neil, T. Powers, D.W. Sexton, M.D. Shinn, C. Tennant, R.L. Walker, A.M. Watson, G.P. Williams, F.G. Wilson, S. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: This work was supported by U.S. DOE Contract No. DE-AC05-84-ER40150, the Air Force Office of Scientific Research, DOE Basic Energy Sciences, the Office of Naval Research, and Joint Technology Office
We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.
 
 
THP172 Operation and Commissioning of the Jefferson Lab UV FEL using an SRF Driver ERL 2432
 
  • C. Tennant, S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, C. Dickover, D. Douglas, F.K. Ellingsworth, P. Evtushenko, C.W. Gould, J.G. Gubeli, F.E. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, J. Kortze, M. Marchlik, S.W. Moore, G. Neil, T. Powers, D.W. Sexton, M.D. Shinn, R.L. Walker, G.P. Williams, F.G. Wilson, S. Zhang
    JLAB, Newport News, Virginia, USA
  • R.A. Legg
    UW-Madison/SRC, Madison, Wisconsin, USA
 
  Funding: Supported by the US Dept. of Energy under DoE contract number DE-AC05-060R23177.
We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.
 
 
THP173 Design of the SRF Driver ERL for the Jefferson Lab UV FEL 2435
 
  • C. Tennant, S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, C. Dickover, D. Douglas, F.K. Ellingsworth, P. Evtushenko, C.W. Gould, J.G. Gubeli, F.E. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, J. Kortze, M. Marchlik, S.W. Moore, G. Neil, T. Powers, D.W. Sexton, M.D. Shinn, R.L. Walker, F.G. Wilson, S. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: Support by DoE Contract DE-AC05-060R23177.
We describe the design of the SRF ERL providing the CW electron drive beam at the Jefferson Lab UV FEL. Based on the same 135 MeV linear accelerator as – and sharing portions of the recirculator with – the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a novel bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation (including correction of RF curvature effects) without the use of magnetic chicanes or harmonic RF. Stringent phase space requirements at the wiggler, low beam energy, high beam current, and use of a pre-existing facility and legacy hardware subject the design to numerous constraints. These are imposed not only by the need for both transverse and longitudinal phase space management, but also by the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and by interactions between the FEL and the accelerator RF system. This report addresses these issues and presents the accelerator design solution that now successfully supports FEL lasing.