Author: DeFord, J.F.
Paper Title Page
WEP159 Improved Algorithms for Multipacting Simulation in the Analyst Code 1785
 
  • J.F. DeFord, B.L. Held, K.J. Willis
    STAAR/AWR Corporation, Mequon, USA
 
  Funding: Work funded by the U.S. Dept. of Energy, Office of Science, SBIR Contract No. DE-FG02-05ER84373.
Electron multipacting is often deleterious in RF structures and must be controlled via modifications to the geometry, materials, or external fields. Recent improvements to the capabilities for modeling multipacting in the Analyst software package are presented in this paper. A backward difference scheme*, coupled with Newton-Raphson iteration, is used to integrate particle position/momentum, with integrations interrupted at element faces to minimize errors and lost particles. Support for the Furman-Pivi secondary emission model** has been implemented, with separate representations for low energy, re-diffused, and backscattered secondary particles, and multiple emissions per impact based upon a probability distribution. We have also developed a method to prune the tree of secondary particles resulting from an impact that minimizes particle count growth while maintaining important statistical information about the resonance. Finally, we have added support for volumetric sourcing of primaries, wherein the model volume is seeded with a population of particles with random positions and initial velocities. These improvements, along with benchmark calculations, will be presented.
* D. Darmofal, et al., Jour. Comp. Phys., 123, 1996, pp. 182-195.
** M. Furman, et al., LBNL-52807, June, 2003.
 
 
WEP160 Inclusion of Surface Roughness Effects in Emission Modeling With the MICHELLE Code 1788
 
  • J.F. DeFord
    STAAR/AWR Corporation, Mequon, USA
  • N.J. Dionne, S.G. Ovtchinnikov, J.J. Petillo
    SAIC, Billerica, Massachusetts, USA
 
  High-brightness electron beams are needed in millimeter-wave tubes and other high-power RF applications. Cathode surface roughness at the micron scale, commonly due to machining or other effects, can lead to broadening of the velocity distribution of electrons downstream, increasing emittance and lowering beam brightness. In this paper we investigate methods of including surface roughness effects in the MICHELLE code*. Modeling of typical surface imperfections over an entire cathode is not feasible, since it requires representation of features that are 3 to 5 orders of magnitude smaller than the cathode. Moreover, the actual surface imperfections for a given cathode are unknown without a prohibitive microscopic investigation of the surface, and these details vary between cathodes with the same machining history. To avoid these problems we investigated modifications to emission models that can account for these effects in an average sense, allowing the use of a smooth emission surface in a model while retaining the essential effects of the rough surface on the beam. We present the results of this investigation, along with representative solutions for sample structures.
*John Petillo, et al., “Recent Developments in the MICHELLE 2D/3D Electron Gun and Collector Modeling Code”, IEEE Trans. Electron Devices Sci., vol. 52, no. 5, May 2005, pp. 742-748.