Author: Chang, X.
Paper Title Page
MOP155 Progress on Diamond Amplified Photo Cathode 382
 
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • I. Ben-Zvi, X. Chang, J. Kewisch, E.M. Muller, T. Rao, J. Smedley, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven science Associates, LLC Contract No.DE-AC02-98CH10886 with the U.S.DOE
Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length.
 
 
TUOAN2 High Luminosity Electron-Hadron Collider eRHIC 693
 
  • V. Ptitsyn, E.C. Aschenauer, M. Bai, J. Beebe-Wang, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, P. He, W.A. Jackson, A.K. Jain, E.C. Johnson, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, M.G. Minty, B. Parker, A.I. Pikin, T. Rao, T. Roser, B. Sheehy, J. Skaritka, S. Tepikian, R. Than, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, Q. Wu, W. Xu, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
  • E. Tsentalovich
    MIT, Middleton, Massachusetts, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented.
 
slides icon Slides TUOAN2 [4.244 MB]  
 
TUP051 Design and First Cold Test of BNL Superconducting 112 MHz QWR for Electron Gun Applications 898
 
  • S.A. Belomestnykh, I. Ben-Zvi, X. Chang, R. Than
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm, B. Siegel, M.J. Winowski
    Niowave, Inc., Lansing, Michigan, USA
 
  Brookhaven National Laboratory and Niowave, Inc. have designed, fabricated, and performed the first cold test of a superconducting 112 MHz quarter-wave resonator (QWR) for electron gun experiments. The first cold test of the QWR cryomodule has been completed at Niowave. The paper discusses the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule for future experiments.
Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Niowave is supported by the U.S. DOE under SBIR contract No. DE-FG02-07ER84861
 
 
TUP054 Mechanical Design of 56 MHz Superconducting RF Cavity for RHIC Collider 907
 
  • C. Pai, I. Ben-Zvi, A. Burrill, X. Chang, G.T. McIntyre, R. Than, J.E. Tuozzolo, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centreline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.
 
 
TUP147 Rotating Dipole and Quadrupole Field for a Multiple Cathode System 1106
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, W. Meng, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented.  
 
WEP161 Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes 1791
 
  • D.A. Dimitrov, R. Busby, J.R. Cary, D.N. Smithe
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U. S. Department of Energy under the DE-SC0004431 grant.
Emission of electrons from a diamond-amplified cathode was recently demonstrated*. This experiment was based on a promising new concept** for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties.
* X. Chang et al., Electron Beam Emission from a Diamond-Amplified Cathodes, to appear in Phys. Rev. Lett. (2010).
** I. Ben-Zvi et al., Secondary emission enhanced photoinjector, Rep. C-A/AP/149, BNL (2004).
 
 
WEP263 A Multiple Cathode Gun Design for the eRHIC Polarized Electron Source 1969
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider eRHIC requires a high average current (~50 mA), short bunch (~3 mm), low emittance (~20 μm) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode [1]. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique.
 
 
THP082 Design Aspects of an Electrostatic Electron Cooler for Low-energy RHIC Operation 2288
 
  • A.V. Fedotov, I. Ben-Zvi, J. Brodowski, X. Chang, D.M. Gassner, L.T. Hoff, D. Kayran, J. Kewisch, B. Oerter, A. Pendzick, S. Tepikian, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Electron cooling was proposed to increase the luminosity of RHIC operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator for cooling heavy ions in RHIC was studied in detail. In this paper, we describe the requirements and options to be considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such electron cooling system are also discussed.