Author: Cardoso, F.H.
Paper Title Page
MOP166 Comissioning of a BPM system for the LNLS Booster to Storage Ring Transfer Line 405
 
  • F.H. Cardoso, S.R. Marques, X.R. Resende
    LNLS, Campinas, Brazil
 
  In order to increase the number of diagnostics and make possible studies of beam position effects in the injection efficiency, a beam position monitoring system was designed to equip the BTS (booster to storage ring) transfer line employing the long striplines BPMs. The log-ratio technique was applied using a commercial electronics module (LR-BPM) from Bergoz Instrumentation. Currently the system is integrated to the LNLS control system, database and ready to be used routinely during the injections. This work describes the system topology, details about the hardware and software, bench tests and measurements performed with electron beam. Future plans to improve the injection efficiency will also be presented.  
 
MOP263 Fast Orbit Feedback System for the LNLS Storage Ring 597
 
  • L. Sanfelici, F.H. Cardoso, D.D. Felix Ferreira, S.R. Marques, D.O. Tavares
    LNLS, Campinas, Brazil
 
  The Brazilian Synchrotron Light Laboratory (LNLS) is based on a 1.37 GeV storage ring, previously operated by means of a Slow Orbit Feedback System at a maximum rate of 1 correction every 3 seconds. Since photon flux stability is a key issue for light source users, a faster control system was envisaged to provide better beam stability. This work presents an overview of the hardware architecture and the preliminary results achieved with the implementation of a Fast Orbit Feedback System using commercial hardware. BPM signals are acquired in a distributed topology and sent through a deterministic EtherCAT network to a PXI controller, responsible for applying the SVD-based correction matrix multiplication and communicating with the accelerator control system; the calculated current setpoints are sent to the correctors’ power supplies through a second EtherCAT network. FPGA-based acquisition and actuation chassis perform pre-filtering and control on the digitized input and output signals, respectively.