Author: Brown, K.A.
Paper Title Page
MOOCN3 RHIC Polarized Proton Operation 41
 
  • H. Huang, L. A. Ahrens, I.G. Alekseev, E.C. Aschenauer, G. Atoian, M. Bai, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, W.W. MacKay, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, D. Smirnov, K.S. Smith, D. Steski, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper.
 
slides icon Slides MOOCN3 [2.331 MB]  
 
WEP018 Optics Error Measurements in the AGS for Polarized Proton Operation 1534
 
  • V. Schoefer, L. A. Ahrens, K.A. Brown, J.W. Glenn, H. Huang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A large distortion of the vertical beta function became evident in the Brookhaven AGS during the 2010 polarized proton run. This paper describes the beam measurements and model calculations made to verify the distortion of the optics, to infer possible sources and to explore correcting strategies. The optics distortion is only apparent when operating with a betatron tune very near the integer (as required for polarization preservation during acceleration in the AGS) and with the lattice chromaticity sextupoles powered. The measurements indicate a small (on the order of millimeters) unexpected systematic horizontal closed orbit displacement in the sextupoles that is not evident in beam position monitor measurements. Motivated especially by these observations a complete survey of the AGS was performed during the 2010 shutdown period.&nb sp; The results of that survey and their impact on the observed optical errors in the AGS are included.
 
 
WEP141 Development of a Stepwise Ray-Tracing Based on-Line Model at AGS 1749
 
  • F. Méot, L. A. Ahrens, K.A. Brown, J.W. Glenn, H. Huang, T. Roser, V. Schoefer, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A model of the Alternating Gradient Synchrotron is being developed based on stepwise ray-tracing numerical tools. It provides a realistic representation of the lattice, and accounts for the two helical partial Siberian snake insertions. The aim is to make this stepwise ray-tracing based model an aid for the understanding of the AGS, in matter of both beam dynamics and polarization transmission.
 
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.
 
 
THP079 Recent RHIC-motivated Polarized Proton Developments in the Brookhaven AGS 2282
 
  • V. Schoefer, L. A. Ahrens, M. Bai, S. Binello, M. Blaskiewicz, K.A. Brown, C.J. Gardner, J.W. Glenn, H. Huang, F. Lin, W.W. MacKay, J. Morris, S. Nemesure, T. Roser, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The RHIC polarized proton physics program requires high luminosity and high polarization which depends directly on the intensity, emittances and polarization delivered to RHIC by the injector chain. In the AGS, two partial snakes create gaps in the realized spin-tune around the integers which allows an accelerating beam with sufficiently small vertical emittance and near-integer vertical tune to avoid the imperfection and vertical intrinsic resonances. The same strategy strengthens the many (82) weak horizontal intrinsic resonances crossed during AGS acceleration. A system speeding up these resonance crossings – the AGS JumpQuad system: 82 tiny (0.04) fast (100usec) betatron tune shifts – has been commissioned and evolved during RHIC Runs 09, 10, and 11. Subtle properties of the AGS geometry and lattice, magnified into relevance by the high vertical tune can result in polarization-damaging emittance growth when combined with the Jump Quad gymnastics. Orbit stability is critical. Some aspects of the JumpQuad system, of this commissioning effort and related developments will be described.