Author: Boulware, C.H.
Paper Title Page
MOP042 Design of a Superconducting Photonic Band Gap Structure Cell 178
 
  • E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy (DOE) Office of Science Early Career Research Program.
We present a design of a superconducting photonic band gap (PBG) accelerator cell operating at 700 MHz. It has been long recognized that PBG structures have great potential in reducing long-range wakefields in accelerators. Using PBG structures in superconducting particle accelerators will allow moving forward to significantly higher beam luminosities and lead towards a completely new generation of colliders for high energy physics. We designed the superconducting PBG cell which incorporates higher order mode (HOM) couplers to conduct the HOMs filtered by the PBG structure out of the cryostat. The accelerator characteristics of the cell were evaluated numerically. A scaled prototype cell was fabricated out of copper at the higher frequency of 2.8 GHz and cold-tested. The 700 MHz niobium cell will be fabricated at Niowave, Inc. and tested for high gradient at Los Alamos in the near future.
 
 
TUP051 Design and First Cold Test of BNL Superconducting 112 MHz QWR for Electron Gun Applications 898
 
  • S.A. Belomestnykh, I. Ben-Zvi, X. Chang, R. Than
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm, B. Siegel, M.J. Winowski
    Niowave, Inc., Lansing, Michigan, USA
 
  Brookhaven National Laboratory and Niowave, Inc. have designed, fabricated, and performed the first cold test of a superconducting 112 MHz quarter-wave resonator (QWR) for electron gun experiments. The first cold test of the QWR cryomodule has been completed at Niowave. The paper discusses the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule for future experiments.
Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Niowave is supported by the U.S. DOE under SBIR contract No. DE-FG02-07ER84861
 
 
TUP055 Design and Preliminary Test of the 1500 MHz NSLS-II Passive Superconducting RF Cavity 910
 
  • J. Rose, W.K. Gash, B.N. Kosciuk, V. Ravindranath, S.K. Sharma, R. Sikora, N.A. Towne
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm, C. Krizmanich, B. Kuhlman, N. Miller, B. Siegel, M.J. Winowski
    Niowave, Inc., Lansing, Michigan, USA
 
  NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. Earlier work described the design alternatives and the geometry selected for a copper prototype. We subsequently have iterated the design to lower the R/Q of the cavity and to increase the diameter of the beam pipe ferrite HOM dampers to reduce the wakefield heating. A niobium cavity and full cryomodule including LN2 shield, magnetic shield and insulating vacuum vessel have been fabricated and installed.