Paper | Title | Page |
---|---|---|
MOP043 | Simulations of a Muon Linac for a Neutrino Factory | 181 |
|
||
Funding: Supported in part by DOE grant DE-FG-08ER86351 The Neutrino Factory baseline design involves a complex chain of accelerators including a single-pass linac, two recirculating linacs and an FFAG. The first linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV. It must accept a high emittance beam about 30 cm wide with a 10% energy spread. This linac uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities. Simulations have been carried out using several codes including Zgoubi, OptiM, GPT, and G4beamline, both to determine the optics and to estimate the radiation loads on the elements due to beam loss and muon decay. |
||
MOP052 | Matched Optics of Muon RLA and Non-Scaling FFAG ARCS | 196 |
|
||
Funding: Supported in part by US DOE STTR Grant DE-FG02-08ER86351 Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. To reduce the number of required return arcs, we employ a Non-Scaling Fixed-Field Alternating-Gradient (NS-FFAG) arc lattice design. We present a complete linear optics design of a muon RLA with two-pass linear NS-FFAG droplet return arcs. The arcs are composed of symmetric cells with each cell designed using combined function magnets with dipole and quadrupole magnetic field components so that the cell is achromatic and has zero initial and final periodic orbit offsets for both passes’ energies. Matching to the linac is accomplished by adjusting linac quadrupole strengths so that the linac optics on each pass is matched to the arc optics. We adjust the difference of the path lengths and therefore of the times of flight of the two momenta in each arc to ensure proper synchronization with the linac. We investigate the dynamic aperture and momentum acceptance of the arcs. |
||
MOP152 | G4beamline Particle Tracking in Matter Dominated Beam Lines | 373 |
|
||
Funding: Supported in part by USDOE STTR Grant DE-FG02-06ER86281 The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available. |
||
TUODN3 | Beam Dynamics Studies of Parallel-Bar Deflecting Cavities | 790 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and superconducting. The compact size of these cavities as compared to conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of eight 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam. |
||
![]() |
Slides TUODN3 [1.558 MB] | |