

Beam Dynamics Studies of Parallel-bar Deflecting Cavities

S. Ahmed¹, G. Krafft^{1,2}, K. Deitrick³, S. De Silva^{1,2}, J. Delayen^{1,2}, M. Spata¹, M. Tiefenback¹, A. Hofler¹, K. Beard⁴

¹Thomas Jefferson National Accelerator Facility, Newport News, VA, USA ²Center for Accelerator Science, Old Dominion University, Norfolk, USA ³Rensselaer Polytechnic Institute, Troy, NY, USA ⁴Muons, Inc., Batavia, IL, USA

Particle Accelerator Conference, NY, USA, Mar. 28 – Apr. 01, 2011

Layout of Presentation

- ✤ Brief Overview of 12 GeV Upgrade related to 11 GeV RF separation
- Motivation
- Superconducting Structure
- NC Cavity Arrangements
- Comparison Between NC and SC Structures
- ✤ Summary

Accelerator Schematic with 12 GeV Upgrade Options

Schematic of Separation Plus Extraction System

Noteworthy Points:

- Utilize existing horizontal extraction magnet (Lambertson)
- Vertical separation followed by horizontal extraction
- ✤ 17 mm vertical displacement at entrance of extraction magnet

Deflecting Cavities – NC & SC

Superconducting (SC)

Normal Conducting (NC)

Parameter	SC	NC	Unit
Frequency of π mode	499.2	499	MHz
$\lambda/2$ of π mode	300.4	300.4	mm
Cavity length	394.4	300	mm
Bars width	67	20	mm
Bars length	284	135	mm
Aperture diameter	40.0	15	mm
V _{def} *	0.3	0.3	MV
E _p *	1.85	3.39	MV/ m
B _p *	6.69	8.87	mT
$G = QR_S$	67.96	34.9	Ω
[R/Q] _T	933.98	24921	Ω
At E _T * = 1 MV/m			

Why Need Simulations ?

- Two different deflecting cavities : normal conducting (exists for 6 GeV CEBAF operation) and superconducting (design available)
- ✤ No beam dynamics predictions available for 11 GeV separation
- Require one/two SC but six/eight NC structures
 - P Aperture diameter : 40 mm for SC and \sim 15 mm for NC
 - Beam stay clear condition requires 6.5 mm from either wall (SC is OK but NC may not enough)
 - Alignment tolerance for NC arrangement
 - Emittance dilution needs to know

Beam Dynamics : Simulation Schematic

- Particle : 1000 electron ($m_e = 5.11 \times 10^{-4} \text{ GeV}$), Q = 1 pC
- E: 11 GeV, $p = \sqrt{(E^2 m_e^2)} \sim 11 \text{ GeV/c}$
- $\beta = E / p \sim 1$, $\gamma = E / m \sim 2.15264 \times 10^4$

Distribution : uniform Initial Emittance : zero

First discussion for SC structure followed by comparison with NC

Transverse Displacement & Deflection

$$\mathbf{x}_{f} = \mathbf{x}_{0} + \frac{L}{2} \left(\mathbf{x}_{0}' + \mathbf{x}_{f}' \right) + \frac{q_{e} V_{def}}{k E_{b}} Sin\phi$$

Angle has cosine function

Displacement has sine function

1

Displacement & Deflection (a) Lambertson Magnet

Normalized RMS Emittance

For uniform distribution corresponding to $\varphi = \varphi_{ref}$:

 $\mathcal{E}_{n, rms} = \frac{q_e V_{def}}{4\sqrt{3}m_e c^2} kr_b l_b = 0.15 \text{ mm-mrad agrees with simulation}$ $\varepsilon_{n, rms}^{\text{def}} = 0.5 \text{ x } \varepsilon_{n, rms}^{\text{ref}}; \text{ as deflecting gradient is half.}$

Normal Conducting Cavity

8-Cavity Arrangement

Cavity Length = 601.2 mm (a) f = 499 MHz, $c = 3 \times 10^8$ m/s Gap = 130.06 mm Center-to-center distance = 731.26 mm Time-Delay = $(731.26 \times 10^{-3})/(3 \times 10^8) = 2.44$ ns Phase Delay = $2\pi f \propto Time-Delay = 437.88$ deg

NC Versus SC

Mechanical Vibration : Displacement & Deflection

Conclusion

• One/two SC or an array of NC structures can be used to provide required vertical displacement

- Emittance dilution is small
- Array of NC cavities demonstrated stability against mechanical vibration
- Both SC and NC structures are suitable for 11 GeV separation in 12 GeV upgrade of CEBAF

