Author: Barbanotti, S.
Paper Title Page
TUP069 Status of the Mechanical Design of the 650 MHz Cavities for Project X 943
 
  • S. Barbanotti, M.S. Champion, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, T.J. Peterson, L. Ristori, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  In the high-energy section of the Project X Linac, acceleration of H- ions takes place in superconducting cavities operating at 650 MHz. Two families of five-cell elliptical cavities are planned: β = 0.61 and β = 0.9. A specific feature of the Project X Linac is low beam loading, and thus, low bandwidth and higher sensitivity to microphonics. Efforts to optimize the mechanical design of the cavities to improve their mechanical stability in response to the helium bath pressure fluctuations will be presented. These efforts take into account constraints such as cost and ease of fabrication. Also discussed will be the overall design status of the cavities and their helium jackets.  
 
TUP070 EM Design of the Low-Beta SC Cavities for the Project X Front End 946
 
  • I.G. Gonin, S. Barbanotti, P. Berrutti, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The low-energy part of the Project X H-linac includes three types of superconducting single spoke cavities (SSR) with β = 0.11, 0.21 and 0.4 operating at the fundamental TEM-mode at 325MHz. In this paper we present the detailed EM optimization of cavity shapes having the goal to minimize the peak electric and magnetic fields. We also discuss the importance of the integration of EM and mechanical design.  
 
TUP082 Test of a Coaxial Blade Tuner at HTS/FNAL 976
 
  • Y.M. Pischalnikov, S. Barbanotti, E.R. Harms, A. Hocker, T.N. Khabiboulline, W. Schappert
    Fermilab, Batavia, USA
  • A. Bosotti, C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
 
  Funding: Work is supported by the U.S. Department of Energy
Fermilab is building Cryomodule 2 for ILCTA facility at NML. A coaxial blade tuner has been chosen for the CM2 1.3GHz SRF cavities. A summary of results from cold test of the tuners in the Fermilab Horizontal Test Stand will be presented.
 
 
TUP084 Design of Single Spoke Resonators for Project X 982
 
  • L. Ristori, S. Barbanotti, M.S. Champion, M.H. Foley, I.G. Gonin, C.J. Grimm, T.N. Khabiboulline, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Project X is based on a 3 GeV CW superconducting linac and is currently in the R&D phase awaiting CD-0 approval. The low-energy section of the Project X H-linac includes three types of super-conducting single spoke cavities operating at 325 MHz. SSR0 (26 cavities), SSR1 (18 cavities) and SSR2 (44 cavities) have a geometrical beta of = 0.11, 0.21 and 0.4 respectively. Single spoke cavities were selected for the linac in virtue of their higher r/Q. In this paper we present the decisions and analyses that lead to the final designs. Electro-magnetic and mechanical finite element analyses were performed with the purpose of optimizing the electro-magnetic design, minimizing frequency shifts due to Helium bath pressure fluctuations and providing a pressure rating for the resonators that allow their use in the cryomodules.  
 
TUP086 Microphonics control for Project X 988
 
  • W. Schappert, S. Barbanotti, J. Branlard, G.I. Cancelo, R.H. Carcagno, M.S. Champion, B. Chase, I.G. Gonin, A.L. Klebaner, D.F. Orris, T.J. Peterson, Y.M. Pischalnikov, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Work is supported by the U.S. Department of Energy
The proposed multi-MW Project X facility at Fermilab will employ cavities with bandwidths as narrow as 20 Hz. This combination of high RF power with narrow bandwidths combined requires careful attention to detuning control if these cavities are to be operated successfully. Detuning control for Projects X will require a coordinated effort between the groups responsible for various machine subsystems. Considerable progress in this area has been made over the past year.
 
 
WEP221 CW Room-Temperature Bunching Cavity for the Project X MEBT 1900
 
  • G.V. Romanov, S. Barbanotti, E. Borissov, J.A. Coghill, I.G. Gonin, S. Kazakov, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The Project-X, a multi-MW proton source based on superconducting linac, is under development at Fermilab. The front end of the linac contains a CW room temperature MEBT section which comprises ion source, RFQ and high-bandwidth bunch selective chopper. The length of the chopper exceeds 10 m, so four re-bunching cavities are used to support the beam longitudinal dynamics. The RF and mechanical designs of the re-bunching cavity including stress and thermal analysis are reported.  
 
THOCS6 Progress in Cavity and Cryomodule Design for the Project X Linac 2133
 
  • M.S. Champion, S. Barbanotti, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, J.S. Kerby, S. Nagaitsev, T.H. Nicol, T.J. Peterson, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The continuous wave 3 GeV Project X Linac requires the development of two families of cavities and cryomodules at 325 and 650 MHz. The baseline design calls for three types of superconducting single-spoke resonators at 325 MHz having betas of 0.11, 0.22, and 0.42 and two types of superconducting five-cell elliptical cavities having betas of 0.61 and 0.9. These cavities shall accelerate a 1 mA H beam initially and must support eventual operation at 4 mA. The electromagnetic and mechanical designs of the cavities are in progress and acquisition of prototypes is planned. The heat load to the cryogenic system is up to 25 W per cavity in the 650 MHz section, thus segmentation of the cryogenic system is a major issue in the cryomodule design. Designs for the two families of cryomodules are underway.  
slides icon Slides THOCS6 [2.241 MB]  
 
FROBS5 1.3 GHz Superconducting RF Cavity Program at Fermilab 2586
 
  • C.M. Ginsburg, T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, L.D. Cooley, C.A. Cooper, M.H. Foley, M. Ge, C.J. Grimm, E.R. Harms, A. Hocker, R.D. Kephart, T.N. Khabiboulline, J.R. Leibfritz, A. Lunin, J.P. Ozelis, Y.M. Pischalnikov, A.M. Rowe, W. Schappert, D.A. Sergatskov, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy.
At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules, for Project X, an International Linear Collider, or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
 
slides icon Slides FROBS5 [3.749 MB]