Author: Badakov, H.
Paper Title Page
MOP141 Design, Fabrication and Characterization of a Micron-scale Electron Source Based on Field Enhanced Pyroelectric Crystals 352
 
  • H. Badakov, J.M. Allen, N.S. Carranza, G. Travish, J. Zhou
    UCLA, Los Angeles, USA
  • E.R. Arab
    PBPL, Los Angeles, USA
  • R.B. Yoder
    Manhattanville College, Purchase, New York, USA
 
  As a part of the Micro-Accelerator Platform (MAP) project, an electron source with a sub-micron size emitter is required. It is also desired that the source produces electrons with energies above the structure's minimum capture energy (about 25 keV) without the use of an external power supply. Field enhanced emission backed by field generation in pyroelectric crystals has been explored for this application. Here we present experimental progress towards characterization of electron, and x-ray emission. Purpose built diagnostics and specialized test assembly for optimized heat transmission are discussed.  
 
WEODS4 High Gradient Normal Conducting Radio-Frequency Photoinjector System for Sincrotrone Trieste 1504
 
  • L. Faillace, R.B. Agustsson, P. Frigola
    RadiaBeam, Santa Monica, USA
  • H. Badakov, A. Fukasawa, J.B. Rosenzweig, A. Yakub
    UCLA, Los Angeles, USA
  • F. Cianciosi, P. Craievich, M. Trovò
    ELETTRA, Basovizza, Italy
  • L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Radiabeam Technologies is leading a multi-organizational collaboration by UCLA, INFN and MATS to deliver a high gradient normal conducting radio frequency (NCRF) 1.6 cell photoinjector system to the Sincrotrone Trieste facility. Designed to operate with a 120MV/m accelerating gradient, this dual feed, fat lipped racetrack coupler design is modeled after the LCLS photoinjector with a novel demountable cathode which permits cost effective cathode exchange. Full overview of the project to date will be discussed along with basic, design, engineering, manufacturing and RF test results.  
slides icon Slides WEODS4 [3.186 MB]