Author: Akre, R.
Paper Title Page
TUP259 A Solid-State Nanosecond Beam Kicker Modulator Based on the DSRD Switch 1310
 
  • A.L. Benwell, R. Akre, C. Burkhart, A. Krasnykh, T. Tang
    SLAC, Menlo Park, California, USA
  • A. Kardo-Sysoev
    IOFFE, St. Petersburg, Russia
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515
A fast solid-state beam kicker modulator is under development at the SLAC National Accelerator Laboratory. The program goal is to develop a modulator that will deliver 4 ns, ±5 kV pulses to the ATF2 damping ring beam extraction kicker. The kicker is a 50 Ω, bipolar strip line, 60 cm long, fed at the downstream end and terminated at the upstream end. The bunch spacing in the ring is 5.6 ns, bunches are removed from the back end of the train, and there is a gap of 103.6 ns before the next train. The modulator design is based on an opening switch topology that uses Drift Step Recovery Diodes as the opening switches. The design and results of the modulator development are discussed.
 
 
THP168 FEL Beam Stability in the LCLS* 2423
 
  • J.L. Turner, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, Y. Feng, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, K. Horovitz, Z. Huang, R.H. Iverson, D. Kharakh, A. Krasnykh, J. Krzywinski, H. Loos, M. Messerschmidt, S.P. Moeller, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: *This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
During commissioning and operation of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center electron and x-ray beam size, shape, centroid motion have been studied. The studies, sources, and remediation are summarized in this paper.
 
 
THP184 Tuning of the LCLS Linac for User Operation 2462
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, P. Emma, A.S. Fisher, J.C. Frisch, A. Gilevich, P. Hering, Z. Huang, R.H. Iverson, N. Lipkowitz, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, T.J. Smith, J.L. Turner, J.J. Welch, W.E. White, J. Wu, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515.
With the Linac Coherent Light Source (LCLS) now in its third user run, reliable electron beam delivery at various beam energies and charge levels has become of high operational importance. In order to reduce the beam tuning time required for such changes, several diagnostics and feed-forward procedures have been implemented. We report on improved lattice diagnostics to detect magnet, model, and diagnostics errors as well as on measurements of transverse RF kicks and static field contributions and corresponding correction procedures to facilitate beam energy changes.