A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yan, F.

Paper Title Page
MOP017 The Proposed ISAC-III (ARIEL) Low-Energy Area and Accelerator Upgrades 94
 
  • R.E. Laxdal, F. Ames, R.A. Baartman, M. Marchetto, M. Trinczek, F. Yan, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-III proposal is a ten year plan to triple the amount of radioactive ion beam (RIB) time at the facility. The plan includes the addition of two new independent target stations with a design suitable for actinide target materials, a second 500 MeV proton beam line from the TRIUMF cyclotron and a new 50 MeV electron linac as a complementary driver to provide RIBs through photo-fission. The two new target stations will require a new mass-separator and low-energy beam-transport complex to deliver the additional beams to the ISAC experimental facilities. It is also proposed to install a new linear accelerator section to provide the capability for two simultaneous accelerated RIBs to experimenters. This paper will describe the proposed installations in the low-energy transport and accelerator sections of the ISAC complex.

 
MOP052 Re-phasing of the ISAC Superconducting Linac with Computed Values 193
 
  • M. Marchetto, R.E. Laxdal, F. Yan
    TRIUMF, Vancouver
 
 

The ISAC superconducting linac is a fully operational machine that routinely provides beam to experiments. The linac consists of twenty superconducting independently phased cavities housed in five cryomodules. The initial tune is done manually aided by MATLAB routines to phase the linac and set the correct optics. From the initial tune we calculate the gradient at which each cavity operates based on the energy gain, the transit time factor and the geometry of the cavity itself. Then in the event of a gradient change of one or more cavities we can calculate the rf phase shift of each downstream cavity using the initial gradients, the known geometry of the entire linac and assuming linearity of the rf controls. This possibility has been investigated and we have demonstrated that the calculated phase shift can be implemented automatically thus avoiding a complete retune of the machine. In this paper we will present the calculations and the results of the online tests.