A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Weilbach, T.

Paper Title Page
TUP006 Improving the Superconducting Cavities and Operational Findings at the S-DALINAC 395
 
  • R. Eichhorn, A. Araz, M. Brunken, J. Conrad, H.-D. Gräf, M. Hertling, F. Hug, C. Klose, M. Konrad, T. Kuerzeder, C. Liebig, M. Platz, A. Richter, S.T. Sievers, T. Weilbach
    TU Darmstadt, Darmstadt
 
 

Funding: Work supported by the DFG through SFB 634
After 15 years operating the S-DALINAC the design quality factor for the superconducting cavities has still not been reached. Currently, the cavities are heat treated at 850 C in an UHV furnace installed in Darmstadt three years ago. We will report about the furnace, the heat treatment procedure and the results of subsequent surface resistance measurements. Prior to the heat treatment the field flatness of some of the 20 cell elliptical cavities has been measured, leading to unexpected operational findings to be reported: operating and frequency-tuning the cavity for several years led to heavy distortions of the field flatness. This might be an indication that the frequency tuning of the cavity done by compressing the cavity longitudinally, does not act uniformly on each cell even though the cavity is only supported at the end cells. The paper will close with a status report on machine operation and modifications undertaken during the last two years.

 
TUP007 The Power and Polarisation Upgrade Project at the S-DALINAC Injector 398
 
  • R. Eichhorn, R. Barday, U. Bonnes, M. Brunken, J. Conrad, C. Eckardt, J. Enders, H.-D. Gräf, C. Heßler, T. Kuerzeder, C. Liebig, M. Platz, Y. Poltoratska, M. Roth, S.T. Sievers, T. Weilbach
    TU Darmstadt, Darmstadt
  • W. Ackermann, W.F.O. Müller, B. Steiner, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
  • K. Aulenbacher
    IKP, Mainz
  • J.D. Fuerst
    ANL, Argonne
 
 

Funding: Work supported by the DFG through SFB 634
At the superconducting Darmstadt linear accelerator S-DALINAC currently two upgrades of the injector are underway: The current upgrade for the injector mainly involves the superconducting rf part. In order to increase the maximum current from 60 uA to 150 or 250 uA the power coupler design had to be modified, resulting in major changes in the whole cryo-module. Second, an additional polarized electron source (SPIN) has been set-up at an offline test area. There, the polarized electrons are produced by photoemission at a strained GaAs cathode on a 100 kV platform. The test beam line includes a Wien filter for spin manipulation, a Mott polarimeter for polarization measurement and additional diagnostic elements. We will give an overview over the project, report on the status and present first measurement results including the proof of polarisation.