A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Taniguchi, R.

Paper Title Page
TUP029 Electron Linac Based Coherent Radiation Light Source Project at OPU 456
 
  • S. Okuda, T. Kojima, Y. Sakamoto, R. Taniguchi
    Osaka Prefecture University, Sakai
 
 

The coherent synchrotron and transition radiation from electron bunches of a linear accelerator (linac) has continuous spectra in a submillimeter to millimeter wavelength range at relatively high peak-intensities. This light source has been applied to absorption spectroscopy by the authors for various kinds of matters with relatively strong light absorbance such as water and aqueous solutions. The other important characteristics of the coherent radiation are picosecond pulsed light and the high peak intensity of the electric field which can be introduced into matters. In our new project the light source using the pulsed coherent synchrotron and transition radiation will be developed by using the electron beams of a 18 MeV S-band electron linac at Osaka Prefecture University (OPU). The pulse shape of the radiation has been evaluated from the shape of the electron bunch. The system of the light source has been optimized and is under construction. The light source will be applied to the pulsed excitation of matters and to the pump-probe experiment using the electron beam and the coherent radiation.

 
TUP064 Nuclear Reaction Analysis by Using Quasi-Elastic Scattering of Ultra Low Intensity Electron Beams 542
 
  • R. Taniguchi, T. Kojima, S. Okuda, R. Sasaki
    Osaka Prefecture University, Sakai
 
 

Energetic electron beams higher than several MeV occasionally induce direct nuclear reactions with the target nuclei. These processes are attributed to the quasi-elastic scattering of electrons (e,e') with the target nuclei and similar to the photo-nuclear reactions. These reactions are considered to be useful for the non-destructive analysis of heavy elements such as U and Th. In addition, a two-dimensional analysis is realized only by scanning of electron beam. On the other hand, the huge X-ray burst caused by the bremsstrahlung with the electron pulse bombardment is the most harmful phenomenon for the radiation measurement system. In this study, an ultra low intensity electron beam was used for relieving the problem, which has been developed by modifying an electron linear accelerator. The minimum beam charge about several aC/pulse has been achieved at the present. Consequently, the neutron emitted by Pb(e,e'n)Pb reaction was measured successfully by the use of the low intensity beams. The linearity between the neutron count and the concentration of Pb in the target was verified experimentally.